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Figure 1: Trajectory Prediction Results: We highlight the performance of various end-to-end trajectory prediction methods
on the TRAF dataset with different types of road-agents. We showcase six scenarios with different densities, heterogeneity,
camera positions (fixed or moving), times of the day, and weather conditions. We highlight the predicted trajectories (over
5 seconds) of some of the road-agents in each scenario to avoid clutter. The ground truth (GT) trajectory is drawn as a solid
green line and prediction results for our approach, RobustTP are shown as a solid red line. The prediction results of other
methods (RNN-Encoder Decoder, Social-GAN, CS-LSTM) are drawn with different dashed lines. The green circles denote the
road-agent whose trajectory is being predicted. RobustTP predictions are closest to GT in all the scenarios. We observe up
to 18% improvement in average displacement error and up to 35.5% final displacement error over prior methods for dense,
heterogeneous traffic.

ABSTRACT
We present RobustTP, an end-to-end algorithm for predicting fu-

ture trajectories of road-agents in dense traffic with noisy sensor

input trajectories obtained from RGB cameras (either static or mov-

ing) through a tracking algorithm. In this case, we consider noise

as the deviation from the ground truth trajectory. The amount

of noise depends on the accuracy of the tracking algorithm. Our

approach is designed for dense heterogeneous traffic, where the

road agents corresponding to a mixture of buses, cars, scooters,

bicycles, or pedestrians. RobustTP is an approach that first com-

putes trajectories using a combination of a non-linear motion model

and a deep learning-based instance segmentation algorithm. Next,

these noisy trajectories are trained using an LSTM-CNN neural

network architecture that models the interactions between road-

agents in dense and heterogeneous traffic. Our trajectory prediction

algorithm outperforms state-of-the-art methods for end-to-end tra-

jectory prediction using sensor inputs. We achieve an improvement

of upto 18% in average displacement error and an improvement of

up to 35.5% in final displacement error at the end of the prediction

window (5 seconds) over the next best method. All experiments

were set up on an Nvidia TiTan Xp GPU. Additionally, we release a

software framework, TrackNPred. The framework consists of im-

plementations of state-of-the-art tracking and trajectory prediction

methods and tools to benchmark and evaluate them on real-world

dense traffic datasets.
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1 INTRODUCTION
Increasingly powerful GPUs and advanced computer vision tools

have made it possible to perform end-to-end, realtime tracking of

heterogeneous road-agents such as cars, pedestrians, two-wheelers,

etc. These tools can further be used for many applications such as

autonomous driving, surveillance, action recognition, and collision-

free navigation. In addition to tracking, these tools are also essential

to predicting the future trajectory of each road agent. The predicted

trajectories are useful for performing safe autonomous navigation,

traffic forecasting, vehicle routing, and congestion management [11,

30].

In this paper, we focus on dense traffic composed of heteroge-

neous road agents. The traffic density corresponds to the number

of distinct road agents captured in a single frame of the video or

the number of agents per unit length (e.g., a kilometer) of the road-

way. High-density traffic is described as traffic with more than 100

road agents per kilometer. The heterogeneity corresponds to dif-

ferent types of road agents with varying dynamics such as cars,

buses, pedestrians, two-wheelers (scooters and motorcycles), three-

wheelers (rickshaws), animals, etc. These agents have different

shapes, dynamic constraints, and levels of maneuverability. The

difficulty of performing trajectory prediction increases in such traf-

fic because the trajectory of any single road-agent is affected by

other road-agents in close proximity. To accurately predict the tra-

jectory, a model for interaction with nearby road-agents needs to

be considered.

Many methods have been proposed for end-to-end trajectory

prediction. The agent types can be both pedestrians [1, 17] and traf-

fic road-agents [8, 12, 27]. However, a major disadvantage common

to all of the above methods is that they rely on manually annotated

trajectories that are often not readily available for training their

models. Additionally, training manually annotated trajectories in-

troduces dataset bias and results in over-fitting, thereby generating

results that do not emulate real traffic scenarios. Our goal in this

paper is to perform robust end-to-end trajectory prediction using

sensor trajectories. The sensors, in this case, are static or moving

RGB cameras. The trajectories are obtained using a tracking algo-

rithm and thus contains noise. In this case, we consider noise as

the deviation or perturbation from the ground truth trajectory. The

amount of noise depends on the accuracy of the tracking algorithm.

The chance of collisions with other road-agents in close prox-

imity increases in such traffic. Advanced Driver Assistance Sys-

tems (ADAS) help prevent or reduce the likelihood of traffic acci-

dents by mitigating the adverse effects caused by human errors.

ADAS collects information from a road-agent’s surroundings and

utilizes that information to implement critical actions to assist dri-

vers. Predicting road-agents’ trajectories is a crucial task for any

ADAS to avoid collisions. Some ADAS applications for predicting a

road-agent’s trajectory have been proposed [2, 20, 34]. However,

the methods are designed for simple road conditions with sparse

traffic. Moreover, some approaches are computationally expensive

as they rely on lidar-based 3D point clouds [2]. Some algorithms

are controls-based systems that are susceptible to highly dynamic

environments such as dense and heterogeneous traffic [34].

Main Contributions:

(1) We present an end-to-end trajectory prediction approach,

RobustTP, for road-agents in dense and heterogeneous traf-

fic. The input to our algorithm is a video captured using a

static or moving RGB camera and the output is the predicted

trajectory over a span of 3-5 seconds. We outperform state-

of-the-art methods for end-to-end trajectory prediction that

use sensor inputs for training their models. We achieve an

increase of up to 18% average displacement accuracy and

an increase of 35.5% final displacement accuracy over the

next best method. All experiments were set up on an Nvidia

TiTan Xp GPU. Finally, RobustTP is a proof of concept for

an Advanced Driver Assistance Systems (ADAS) application

and can be integrated into current ADAS applications.

(2) Additionally, we build a software framework, TrackNPred,

that contains implementations of many different tracking

and trajectory prediction methods, including our novel algo-

rithm, and tools for quickly applying them to other dense

traffic datasets. The purpose of TrackNPred is twofold: to

reduce collisions by computing safer paths in dense traffic

and to create a common interface for many trajectory predic-

tion approaches. TrackNPred can also benchmark different

algorithms and generate performance comparisons using

standard error measurement metrics on real-world dense

and heterogeneous traffic datasets.

2 RELATEDWORK
In this section, we give a brief overview previous work in trajectory

prediction and Advanced Driver Assistance Systems (ADAS).

2.1 Trajectory Prediction
Trajectory prediction has been well studied through multiple ap-

proaches such as the Bayesian formulation [25], the Monte Carlo

simulation [10], Hidden Markov Models (HMMs) [14], control-

based systems [2] and kalman filters [22]. However, these methods

are highly susceptible to dense and dynamics environments. [2] is

additionally computationally expensive as it relies on lidar-based

3D pointclouds.

Another line of research investigates trajectory prediction by

modeling interactions between the road-agents, either explicitly or

implicitly. These methods work by reducing the task of trajectory

prediction to one of predicting sequences using neural networks.

The sequence prediction model uses the past trajectories as training

data and predicts spatial coordinates that form the future trajectory

sequence. Examples of methods that explicitly model road-agent in-

teraction include techniques based on social forces [19, 36], velocity

obstacles [31], LTA [28], etc. Many of these models were designed

to account for interactions between pedestrians in a crowd (i.e. ho-
mogeneous interactions) and improve the prediction accuracy [3].

Techniques based on velocity obstacles have been extended using

kinematic constraints to model the interactions between heteroge-

neous road agents [26]. On the other hand, there are some meth-

ods [8] that model the heterogeneous interactions between road

agents implicitly.

Approaches based on deep learning use Recurrent Neural Net-

works (RNNs) and its variants for sequence modeling. The benefits

of RNNs for sequence modeling makes them a reasonable choice for

traffic prediction. Since RNNs cannot utilize information from too
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Figure 2: Overview of RobustTP: RobustTP is an end-to-end trajectory prediction algorithm that uses sensor input trajectories
as training data instead of manually annotated trajectories. The sensor input is an RGB video from a moving or static camera.
The first step is to compute trajectories using a tracking algorithm (light orange block). The details of the tracking algorithm
are provided in Section 3.2. The trajectories generated are the training data for the trajectory prediction algorithm (green
block), the details of which are provided in Section 3.3. The model trains on τ = 3 seconds of trajectory history and predicts
trajectory for the next k = 5 seconds. As an example, the predicted trajectories for two of the agents are shown in the output
image at the right end. The green circles denote the positions of the agents at the beginning of prediction, as seen from a
top-view in the 3D world. The red-dashed lines denote the predicted trajectories for the next 5 seconds, as seen from the same
top-view in the 3D world.

far back in its memory, many traffic trajectory prediction methods

use long short-term memory networks (LSTMs) to predict trajec-

tory sequences. These include algorithms to predict trajectories

in traffic scenarios with few heterogeneous interactions [12, 27].

Moreover, the advantage of our approach over these methods lies

in our heterogeneous interaction module. In addition, we are lane-

agnostic, that is, we do not assume vehicles conform to lane-driving,

which is often the case in dense urban areas in developing coun-

tries. Trajectory prediction has also been used for pedestrians in a

crowd [1, 33]. In particular, Bhattacharyya et al. [4] use a bayesian

RNN network to capture the uncertainty in pedestrian motion to

predict trajectories in pedestrian crowds.

RNN-based methods can be combined with other deep learn-

ing architectures to form hybrid networks for trajectory prediction.

Some examples of deep learning architectures include CNNs, GANs,

VAEs, and LSTMs. Each architecture has its own set of advantages

and, for many tasks, the accuracy of the performance can be in-

creased by combining the advantages of individual architectures.

For example, generative models have been successfully used for

tasks such as super resolution [23], image-to-image translation [21],

and image synthesis [16]. However, their application in trajectory

prediction has been limited because back-propagation during train-

ing is non-trivial. In spite of this, generative models such as VAEs

and GANs have been used for trajectory prediction of pedestrians in

a crowd [17] and in sparse traffic [24]. Alternatively, Convolutional

Neural Networks (CNNs or ConvNets) have also been successfully

used in many computer vision applications like object recogni-

tion [37]. Recently, they have also been used for traffic trajectory

prediction [9, 13].

2.2 Advanced Driver Assistance
Systems (ADAS)

Passive safety measures (that do not process sensory information)

in vehicles include safety belts, brakes, airbags etc. ADAS are ac-

tive safety measures that collect and process sensory information

through sensors such as lidars, radars, stereo cameras, and RGB

cameras. Various ADAS process the input information in different

ways to implement actions that assist the driver and prevent or

reduce the likelihood of traffic accidents due to human error. The

development of ADAS began with the Anti-Lock Braking System

(ABS) introduced into production in the late 1970s.

ADAS for trajectory prediction have been proposed [2, 20, 34].

However, [20] uses a constant acceleration motion model to pre-

dict trajectories, which is unrealistic in dense and heterogeneous

traffic. [34] uses a Model Predictive Control based system, which

is susceptible to highly dynamic environments. Lastly, [2] uses a

kalman filter approach and relies on lidars to collect 3D pointcloud

information which is computationally expensive.

As ADAS with various functionality become popular, it is not

uncommon for multiple systems to be installed on a vehicle. If each

function uses its own sensors and processing unit, it will make

installation difficult and raise the cost of the vehicle. As a coun-

termeasure, research integrating multiple functions into a single

system has been pursued and is expected to make installation easier,

decrease power consumption, and vehicle pricing. RobustTP con-

tributes towards this research effort by integrating realtime tracking

with trajectory prediction.

In addition to to trajectory prediction applications, several other

interesting ADAS are currently being used in vehicles on the road.

For example, the Adaptive Cruise Control (ACC) automatically

adapts speed to maintain a safe distance from vehicles in front. The

Blind Spot Detection (BSD) helps drivers when they pull out in order

to overtake another road-agent. Emergency Brake Assist (EBA)

ensures optimum braking by detecting critical traffic situations.

When EBA detects an impending collision, the braking system is

put on emergency standby. Intelligent Headlamp Control (IHC)

provides optimal night vision. The headlamps are set to provide

optimum lighting via a continuous change of the high and low

beams of the lights.

3 ROBUSTTP: OVERVIEW AND ALGORITHM
In this section, we begin by formally stating the problem and de-

scribing the notation. Then we give an overview of our approach
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to realtime end-to-end trajectory prediction in dense and heteroge-

neous traffic scenarios.

3.1 Problem Setup and Notation
Given a set of N road agents R = {ri }i=1...N , the trajectory history

of each road agent ri over τ frames, denoted Ti = {(x1,y1), (x2,y2),
. . . , (xτ ,yτ )}, and the road agent’s size l , we predict the trajectory,
i.e., the spatial coordinates of that road agent for the next k frames.

We define the state space of each road agent ri as

Ωi :=
[
Ti ∆Ti c l

]⊤
, (1)

where ∆ is a derivative operator that is used to compute the ve-

locity of the road agent, and c := [c(x1,y1), . . . , c(xτ ,yτ )]
⊤
. The

traffic concentration, c(x ,y), at the location (x ,y), is defined as the

number of road agents between (x ,y) and (x ,y)+ (δx ,δy) for some

predefined (δx ,δy) > 0.

We also compute camera parameters from given videos using

standard techniques [5, 6] and use the parameters to estimate the

camera homography matrices. The homography matrices are sub-

sequently used to convert the location of road agents in 2D pixels

to 3D world coordinates w.r.t. a predetermined frame of reference,

similar to approaches in [1, 17]. All state-space representations are

subsequently converted to the 3D world space.

Finally, we consider a method to be more robust compared to

other methods if the trajectories predicted by it are less affected

by noise in the trajectory history (arising due to sensor artifacts,

inaccuracies in tracking and similar factors).

3.2 Tracking by Detection
Manually labeled training data are not representative of real-world

trajectories and thus do not produce realistic results. Moreover,

they are not easily available for dense and heterogeneous traffic

scenarios.

Instead, we implement an end-to-end system where a tracking

algorithm computes the input trajectories that form the training

set for the trajectory prediction algorithm. We first use instance

segmentation based on the Mask R-CNN algorithm to generate

background-subtracted representations of the identified road-agent

at some time step t . Then, our tracking methodology uses the RVO

collision avoidance formulation to predict the next state, Ω, for a
road-agent at time t + 1. Finally, the algorithm computes the ID

of the road-agent at time t + 1 using a feature matching process

described in [35]. We now describe the tracking and detection

processes separately in detail:

Detection: The main difficulty in detecting road-agents in dense

traffic from a front camera can be attributed to an increased like-

lihood of occlusions. In such instances, bounding boxes are an

inefficient visual representation. Therefore, we use Mask R-CNN to

perform instance segmentation to reduce background clutter and

generate efficient and occlusion-free representations (Figures 4).

Mask R-CNN begins by generating a set of bounding boxes for

each road-agent in each frame.B = {B | B = [⟨x ,y⟩
top left

,w,h, s, r ],
ri ∈ H} denotes the set of bounding boxes for each ri at current
time t , where ⟨x ,y⟩

top left
,w,h, s, and r denote the top left corner,

width, height, scale, and aspect ratio of B, respectively.

Mask R-CNN also outputs a set of masks, M, for each corre-

sponding bounding box. That is, M = {M | ri ∈ H} denotes the

set of masks for each ri at current time t , where eachM is a [w ×h]
matrix of boolean variables. Now, let W = {W(·) | ri ∈ H} be the

set of white canvases where each canvas,W = [1]w×h ,w and h are

the width and height of each B at current time t . Then,

S = {W(M) | W ∈ W,M ∈ M, ri ∈ H},

is the set of background-subtracted segmented representations

for each road-agent in the current frame. Note that during each

iteration of the detection process, the IDs of the road-agents are

known, and the task is to identify the road-agents at the next time-

step.

Tracking: Our tracking by detection algorithm uses a non-

linear motion model to predict the next state of the agent. Prior

motion models with constant velocity or constant acceleration

assumptions have been shown to not accurately model dense sce-

narios as they do not take into account collision avoidance behavior.

Reciprocal Velocity Obstacles (RVO) [31] models collision avoid-

ance behavior for dense scenes. RVO can be applied to pedestrians

in a crowd as well as dense traffic environments. We use the RVO

formulation and modify the formulation for segmented road-agents.

The RVO formulation requires an additional parameter v
pref

. v
pref

is the velocity the pedestrian would have taken in the absence of

obstacles or colliding pedestrians, computed using the standard

RVO formulation.

The computation of the new state, Ωt+1, is formulated as an op-

timization problem. For each road-agent, RVO computes a feasible

region where it can move without collision. This region is defined

according to the RVO collision avoidance constraints (or ORCA

constraints [31]). If the ORCA constraints forbid a road-agent’s

preferred velocity, that road-agent chooses the velocity closest to

its preferred velocity that lies in the feasible region, as given by the

following optimization:

vnew = argmin

v<ORCA
| |v −v

pref
| |, (2)

The velocity, vnew, is then used to calculate the new position of a

traffic agent.

To combine instance segmentation with RVO, we modify the

state vector, Ωt , to include bounding box information by setting

the position to the centers of the bounding boxes. The centers of

the bounding boxes are by extension, centers of each segmented

road-agent.

3.3 Trajectory Prediction
The goal is to predict trajectories, i.e. temporal sequences of spatial

coordinates of a road agent using neural networks. In standard

neural networks, the objective function can be stated as,

min

w

y − ϕ
(
wT x

) , (3)

where x is the input trajectory of a road-agent,ϕ is the non-linearity,

and ϕ
(
wT x

)
is the predicted trajectory of the road-agent. The ob-

jective is to learn a set of weights,w , that minimizes 3. However,

the difficulty of trajectory prediction in dense traffic lies in the

fact that a road-agent’s trajectory is affected by the trajectories of
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Figure 3: Qualitative analysis of our tracking algorithm on the TRAF dataset consisting of approximately 30 road-agents in
the traffic scene. Frames are chosen with a gap equal to the length of the prediction window, i.e. 5 seconds(∼ 150 frames). Each
bounding box color is associated with a unique ID (displayed on the top left corner of each bounding box). Observation: Note
the consistencies in the (ID)(color); for example, observe rider+two-wheeler (1-2)(green-pink) and three-wheeler (12)(purple).

Figure 4: Efficient representations of road-agents in dense
traffic. Instance segmentation helps reduce occlusions by
reducing background clutter otherwise present in typical
bounding box representations. These representations are
used in our tracking by detection algorithm. The different
colors simply denote individual road-agents.

other road-agents in close proximity, not just it’s own. This is espe-

cially prominent when agents are heterogeneous. For example, the

maneuverability of a bus differs significantly from that of pedestri-

ans; a pedestrian can change directions quickly while a bus cannot.

Additionally, behavioral cues should also be emphasized in hetero-

geneous traffic. Aggressive drivers have non-uniform trajectories

due to maneuvers like over-speeding, tailgating, and overtaking,

while conservative agents tend not to stray from their current tra-

jectories. However, the ability of non-linearity functions in neural

networks to model behavioral aspects of human drivers is still an

unsolved problem. This leads to a need for a model that accounts

for interactions of a road-agent with other nearby road-agents.

In [8], the authors propose such a model that considers two

forms of interactions: spatial interactions based on the location of

a neighboring road-agent with respect to the ego road-agent and

heterogeneous interactions that consider the different static param-

eters (size) and dynamic parameters (steering angle) of road-agents

inside a pre-computed neighborhood. The spatial interactions are

motivated by the observation that, in dense traffic, a road-agent

focuses primarily on road-agents that are in its horizon view (this is

defined in the original paper). In heterogeneous interactions, how-

ever, the road-agent learns to assign adaptive weights to different

heterogeneous road-agents. Combining the two interactions, the

objective function 3 is replaced by,

min

w

y −

{
ϕ
(
wT
x x

)
+ ϕ

(
wT
s s

)
+ ϕ

(
wT
h h

)} , (4)

where w = [wx ws wh ]
T
is a vector comprising the weights for

the input for the ego road-agent, the road-agents modeled by the

spatial interaction formulation, and the road-agents modeled by

the heterogeneous interaction formulation, respectively. Temporal

sequence prediction requires neural networks that can capture tem-

poral dependencies in data, such as LSTMs [15]. However, LSTMs

cannot learn dependencies or relationships of various heteroge-

neous road agents because the parameters of each individual LSTM

are independent of one another. In this regard, ConvNets have been

used in computer vision applications with greater success because

they can learn locally dependent features from images. Thus, to

leverage the benefits of both, the authors of [8] combine ConvNets

with LSTMs to learn locally useful relationships (both in space and

in time) between heterogeneous road agents.

4 TRACKNPRED: A SOFTWARE
FRAMEWORK FOR END-TO-END
TRAJECTORY PREDICTION

TrackNPred is a python-based software library
1
for end-to-end

realtime trajectory prediction for autonomous road-agents. Our first

goal, through TrackNPred, is to enable autonomous road-agents to

navigate safely in dense and heterogeneous traffic by estimating

how road-agents, that are in close proximity, are going to move in

the next few seconds.

The continuous advancement in deep learning has resulted in

the development of several state-of-the-art tracking and trajectory

prediction algorithms that have shown impressive results on real

world dense and heterogeneous traffic datasets. However, there

are currently no theoretical guarantees to validate the compari-

son of performance of different deep learning models. It is only

1
https://gamma.umd.edu/robusttp
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Figure 5: TrackNPred is a deep learning-based framework
that integrates trajectory prediction methods with track-
ing by detection algorithms to motivate further research in
end-to-end trajectory prediction. In this figure, we show the
graphical user interface of TrackNPred where one can se-
lect the tracking by detection algorithm as well as choose
the trajectory prediction method. The user can also set the
hyperparameters for the training and evaluation phases. If
the input can be connected to an RGB camera mounted on
a road-agent, then TrackNPred can be extended to ADAS ap-
plications.

through empirical research that one can evaluate the efficiency of

a particular deep learning model.

Our second goal is to equip researchers with a packaged deep

learning tool that performs trajectory prediction based on various

state-of-the-art neural network architectures, such as Generative

Adversarial Networks (GANs [17]), Recurrent Neural Networks

(LSTMs [1, 8], and Convolutional Neural Networks (CNNs [8, 12]).

Therefore, one of the advantages of TrackNPred is that it enables

researchers to experiment with these different deep learning ar-

chitectures with minimal difficulty. Researchers need only select

hyperparameters for the chosen network. We also provide the abil-

ity to modify individual architectures without disrupting the rest

of the methods (Figure 5).

TrackNPred integrates realtime tracking algorithms with end-

to-end trajectory prediction methods to create a robust framework.

The input is simply a video (through amoving or static RGB camera).

TrackNPred selects a tracking method from the tracking module to

first generate a trajectory, Ti = {(x1,y1), (x2,y2), . . . , (xn ,yn )}, for

the ith road-agent for n frames, where n is a constant. The trajec-

tories for each agent are then treated as the trajectory history for

that agent in the trajectory prediction module. The final output is

the future trajectory for the ego-agent, Tego = ((xn+1,yn+1), (xn+2,
yn+2), . . . , (xn+k ,yn+k )), where k is the length of the prediction

window. This is a major difference from trajectory prediction meth-

ods in the literature [1, 8, 12, 17, 27] that rely onmanually annotated

input trajectories. TrackNPred, in contrast, does not require any

ground truth trajectories.

Finally, TrackNPred evaluates and benchmarks realtime perfor-

mances of various trajectory prediction methods on a real-world

traffic dataset
2
[8]. This dataset contains more than 50 videos

of dense and heterogeneous traffic. The dataset consists of the

following road agent categories: cars, buses, trucks, rickshaws,

2
https://go.umd.edu/TRAF-Dataset

Table 1: The list of algorithms currently implemented in
TrackNPred.

Methods

Tracking by Detection

Mask R-CNN + DeepSORT

YOLO + DeepSORT

Trajectory Prediction

RNN- Encoder Decoder [7]

Social-GAN [17]

Covolutional Social-LSTM [12]

TraPHic [8]

pedestrians, scooters, motorcycles, and other road agents such

as carts and animals. Overall, the dataset contains approximately

13 motorized vehicles, 5 pedestrians, and 2 bicycles per frame.

Annotations consist of spatial coordinates, an agent ID, and an

agent type. The dataset is categorized according to camera view-

point (front-facing/top-view), motion (moving/static), time of day

(day/evening/night), and density level (sparse/moderate/heavy/

challenging). All the videos have a resolution of 1280 × 720.

4.1 Methods Implemented in TrackNPred
One of our goals is to motivate research in highly accurate, end-to-

end, and realtime trajectory prediction methods. To achieve this

goal, we design a common interface for several state-of-the-art

methods from both tracking and trajectory prediction literature.

Such a design facilitates easy bench-marking of new algorithms

with respect to the state-of-the-art. The methods in TrackNPred dif-

fer in numerous ways from their original implementations in the

literature in order to achieve improved accuracy in tracking and

prediction in dense and heterogeneous traffic. Table 1 provides a

list of algorithms currently implemented in TrackNPred.

Tracking Module: For tracking, we mainly focus our atten-

tion on tracking by detection approaches. These are approaches

that leverage deep learning-based object detection models. This is

because tracking methods that do not perform detection require

manual, near-optimal initialization of each road-agent’s state in-

formation in the first video frame. Further, methods that do not

utilize object detection need to know the number of road-agents

in each frame a priori so they do not handle cases in which new

road-agents enter the scene during the video. Tracking by detection

approaches overcome these limitations by employing a detection

framework to recognize road-agents entering at any point during

the video and initialize their state-space information.

At present, we implement python-based tracking by detection

algorithms to facilitate easy integration into TrackNPred. Deep-

SORT [35] is currently the state-of-the-art realtime tracker imple-

mented in python. Naturally, we use DeepSORT as the base tracker.

However, DeepSORT was originally developed using a constant ve-

locity model with the goal of tracking pedestrians in sparse crowds.

Consequently, it is not optimized for dense and heterogeneous traf-

fic scenes that may contain cars, buses, pedestrians, two-wheelers,

and even animals. Therefore, we replace the constant velocitymodel

with a non-linear RVO motion model [32], which is designed for

motion planning in dense environments.

The advantage of using tracking by detection algorithms is that

we can combine the unique benefits of different object detection
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models. For example, we integrate two state-of-the-art object detec-

tionmodels, YOLO andMask R-CNN. They are state-of-the-art in its

own category. The YOLO algorithm is extremely fast as compared

to Mask R-CNN wile the latter offers a higher accuracy.

The output of the tracking module is a trajectory file with corre-

sponding ID’s. An ID is an integer unique to every agent. Each row

of this file corresponds to the following format:

< Fid >, < Vid >, < center-X >, < center-Y >

which denotes the frame ID, vehicle ID, and the 2D coordinates of

the center of the bounding box of the road-agent. This trajectory

file is input for the trajectory prediction module.

Trajectory Prediction Module: TrackNPred currently sup-

ports the following end-to-end trajectory prediction algorithms:

Social-Gan [17], Convolutional Social-LSTM [12], RNN Encoder-

Decoder [7], and TraPHic [8]. All trajectory prediction methods

that are implemented in TrackNPred work in essentially the same

manner. However, there are some differences which we highlight.

Social-GAN [17] was originally trained to predict the trajectories of

pedestrians in a crowd. Additionally, CS-LSTM [12] was designed

to predict trajectories for road-agents in sparse and homogeneous

traffic. Our goal is to perform trajectory prediction in dense and

heterogeneous traffic environments. Therefore, we trained all three

implementations on a real world dense and heterogeneous traffic

dataset.

5 EXPERIMENTAL EVALUATION
We first compare the performance of our trajectory prediction al-

gorithm, RobustTP, with trajectory prediction methods trained on

manually annotated trajectories, on the TRAF dataset [8] in Sec-

tion 5.1. We also compare with the same methods when all are

trained on sensor inputs. We use our software framework, TrackN-

Pred for the second set of experiments in Section 5.2.

5.1 Comparison with Methods Using Manually
Annotated Inputs

We use the following well-known metrics for evaluation:

• Average Displacement Error (ADE): The average of the root

mean squared error (RMSE) between the ground truth and

the predicted trajectory position at every time frame for the

entire duration of 5 seconds. A lower ADE for a method

implies that the method has a lower drift from the ground

truth on the average, which is desirable.

• Final Displacement Error (FDE): The RMSE between the

ground truth and the predicted trajectory position at the

last time frame. A lower FDE for a method indicates it has a

better prediction in the longer term.

In Table 2, we compare our algorithm that is trained on sensor in-

puts (using Mask R-CNN [18] for detection), with existing methods

that, by contrast, use manually annotated ground truth trajectory

history as training data. The RNN Encoder-Decoder model [7] is

used for sequence modeling in many applications and has been

adapted for trajectory prediction [1, 12]. However, these approaches

mainly target either sparse traffic or sparse pedestrian crowds.

Table 2: We evaluate RobustTP with methods that use man-
ually annotated trajectory histories, on the TRAF Dataset.
The results are reported in the following format: ADE/FDE,
where ADE is the average displacement RMSE over the 5 sec-
onds of prediction and FDE is the final displacement RMSE
at the end of 5 seconds. We observe that RobustTP is at par
with the state-of-the-art.

RNN-ED S-GAN CS-LSTM TraPHic RobustTP

3.24/5.16 2.76/4.79 1.15/3.35 0.78/2.44 1.75/3.42

Table 3: We evaluate RobustTP with methods that use noisy
sensor input, on the TRAF Dataset. The trajectory histo-
ries are computed using tracking by two detection methods:
Mask R-CNN [18] and YOLO [29]. The results are reported
in the following format: ADE/FDE, where ADE is the aver-
age displacement RMSE over the k seconds of prediction and
FDE is the final displacement RMSE at the end of k seconds.
We tested for both short-term (k = 3) and longer-term (k = 5)
predictions.We observe for all the cases that RobustTP is the
state-of-the-art.

Prediction length, k = 3 secs

RNN-ED S-GAN CS-LSTM RobustTP

MRCNN 2.60/4.96 2.11/3.50 1.27/2.01 1.14/1.90
YOLO 1.13/2.18 1.29/2.18 1.08/1.55 0.96/1.53

Prediction length, k = 5 secs

RNN-ED S-GAN CS-LSTM RobustTP

MRCNN 3.99/6.55 3.23/5.69 1.91/3.76 1.75/3.42
YOLO 2.06/4.26 1.98/3.72 1.52/2.67 1.29/1.97

Therefore, we trained it from scratch on the TRAF dataset. Social-

GAN [17] is state-of-the-art for predicting trajectories of pedestri-

ans in sparse scenarios, we, therefore, trained this method on the

TRAF dataset from scratch as well. The CS-LSTM [12], is designed

for trajectory prediction for road-agents for sparse traffic, therefore

we fine-tuned on top of it with the TRAF dataset.

After preparing the methods for fair evaluation, we observe that

even with noisy trajectories as input, the ADE of our algorithm is

1.49 meters lower than the RNN Encoder-Decoder model [7] and

1.98 meters lower than Social-GAN [17]. This is primarily because

Social-GAN [17] is trained for a single road-agent (pedestrians) in

sparse scenarios, which does not transfer to modeling heteroge-

neous agents in dense traffic in the TRAF dataset. Additionally, our

FDE is 2.72 meters and 2.35 meters lower than RNN-ED and S-GAN,

respectively.

We also observe that the ADE of our algorithm is 0.6 meters

higher than CS-LSTM [12]. CS-LSTMweighs all agents in the neigh-

borhood of the ego-agent equally. Thus it cannot adapt to dense,

heterogeneous traffic. However, this problem is offset by the fact

that we used manually annotated trajectory history as input to

the CS-LSTM, resulting in overall better performance. Finally, com-

pared to TraPHic [8], our ADE is only slightly (0.97 meters) higher,

since TraPHic also models dense and heterogeneous road-agents

and uses ground truth trajectory history for prediction. Overall
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(a) Using Mask R-CNN [18] for detection. (b) Using YOLO [29] for detection.

Figure 6: RMSE Curve Plot: We compare the RMSE-s of RobustTP with state-of-the-art end-to-end trajectory prediction meth-
ods on the TRAF dataset. All methods were trained using sensor inputs instead ofmanually annotated trajectories. The graphs
were generated using TrackNPred. Overall, we observe that using YOLO for detection provides lower RMSE-s for all the meth-
ods. More importantly, the RMSE of RobustTP is consistently lower than all the other methods after the first second of pre-
diction, implying it has better longer-term performance.

upon comparison, we note that RobustTP is at par with the state-

of-the-art performance of TraPHic and CS-LSTM, while being able

to achieve high accuracy by training on trajectories generated from

sensor inputs.

5.2 Comparison with Methods Using Sensor
Inputs

We use our software framework, TrackNPred, to run a set of ex-

periments to evaluate the performance of end-to-end trajectory

prediction methods using sensor inputs instead of manually anno-

tated trajectories on the TRAF dataset [8]. We use the output of two

tracking methods in the library — one uses Mask R-CNN [18] for

detection and the other uses YOLO [29] for detection — to generate

the input trajectory histories. We then use each of these trajectory

histories as input to each of the trajectory prediction methods to

obtain the trajectory predictions for the next 5 seconds. Finally,

we compare and contrast their performances in Table 3. We also

compare the RMSE curves produced by all these methods in Fig-

ure 6. For each detection model, we can observe that, when all

the methods use trajectory history from noisy tracking data, our

method has a clear advantage. For example, in the case of Mask

R-CNN [18] as the detection model, in addition to outperforming

both RNN-ED [7] and Social-GAN [17] by 2.24 meters and 1.48

meters respectively, RobustTP also outperforms CS-LSTM by 0.16

meters on the ADE metric. It is also state-of-the-art on the FDE

metric. The RMSE curves in Figure 6 further show that beyond the

first second of prediction, the RMSE of RobustTP is consistently

lower than all the other methods. Moreover, at the end of 5 seconds,

the final RMSE of RobustTP is well below 4 meters (less than the

length of an average car). Thus, RobustTP is more reliable than

the other methods in longer-term prediction, which is a crucial

benefit to consider when deciding trajectory prediction methods

for real-world applications.

Finally, these experiments also serve to highlight how TrackN-

Pred makes it convenient to benchmark the tracking and trajectory

prediction methods that best suits specific end-to-end trajectory

prediction tasks, thereby encouraging further research on novel

end-to-end trajectory prediction algorithms.

6 CONCLUSION, LIMITATIONS, AND
FUTUREWORK

We presented a novel end-to-end algorithm, RobustTP, for pre-

dicting the trajectories of road agents in dense and heterogeneous

traffic. Our approach does not require manually annotated trajecto-

ries for training our model. We use 3 seconds of trajectory history as

input and predict the next 5 seconds of the road-agent’s trajectory.

RobustTP has some limitations. The size of the TRAF dataset pro-

hibits training larger deep learning networks. Therefore, we cannot

guarantee generalization to all forms of dense and heterogeneous

traffic scenarios.

Regarding future work, RobustTP is a proof of concept and can

be designed as an effective ADAS. The resulting ADAS would im-

prove upon existing state-of-the-art trajectory prediction ADAS

in many ways. First it is applicable to dense and heterogeneous

traffic. Prior trajectory prediction-based ADAS [2, 20, 34] are either

computationally expensive or susceptible to dynamic environments.

RobustTP is computationally cost-effective since it uses a single

RGB camera and the learning algorithm generalizes across scenes

with varying dynamics. Second, it improves generalization to real-

world scenarios. In autonomous driving, the degree to which a

pre-trained trajectory prediction model generalizes the real world

dynamics is a major concern. Online Hard Example Mining (OHEM)

is an online machine learning training procedure wherein nega-

tively classified training examples identified by the model would be

added to the training set, and re-trained in an online manner. This

has shown to increase generalization to new unseen test data, an

advantage that is desired in autonomous driving. RobustTP, with

its end-to-end capability integrating real-world trajectories in real-

time, can support OHEM and offer better generalization in dense

and heterogeneous traffic. We also plan to expand TrackNPred by

adding more algorithms and providing more hyperparameter tun-

ing capabilities.
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