
Unsupervised Domain Adaptation
to Improve Image Segmentation Quality Both in the Source and Target Domain

Jan-Aike Bolte1 Markus Kamp1 Antonia Breuer2 Silviu Homoceanu2

Peter Schlicht2 Fabian Hüger2 Daniel Lipinski2 Tim Fingscheidt1

{j.bolte, m.kamp, t.fingscheidt}@tu-bs.de

{antonia.breuer, silviu.homoceanu, peter.schlicht, fabian.hueger, daniel.lipinski}@volkswagen.de

1 Technische Universität Braunschweig 2 Volkswagen Group Research

Abstract

Domain adaptation is becoming more and more impor-
tant with the advancing development of machine learning
and the ever-increasing diversity of available data. The ad-
vancement of autonomous driving depends very much on
progress in machine learning, which relies heavily on vast
amounts of training data. It is well known that the per-
formance of such models drops, as soon as the data used
during inference stems from a different domain as the train-
ing data. To avoid the need to label a separate dataset for
each new domain, e.g., each new camera sensor, methods
for domain adaptation are necessary. Most interesting are
unsupervised domain adaptation approaches since they do
not require costly labels for the target domain. In this paper
we adapt a known domain adaptation approach to work in
an unsupervised fashion for semantic segmentation on high
resolution data and provide some analysis of the learned
representations. With our domain-adapted semantic seg-
mentation we were able to achieve a significant 15 % abso-
lute increase in mean intersection over union (mIoU), se-
curing a surprisingly good 5th rank on the target domain
KITTI test set without having used any KITTI labels during
training. In addition to that, we even improved quality on
the source domain data.

1. Introduction

Machine learning is used in more and more applications,
e.g., in autonomous vehicles, and typically requires vast
amounts of annotated data for training. However, the pro-
cess of labeling a sufficient amount of data for the desired
task is often tedious and costly. For many tasks there are
datasets openly available that can be used for training, but in
many cases the domain of the training data does not match
the domain of the target data on which the model will be

Feature
Extractor

Segmentation
Head

xDS
,

xDT
P

GRL
Domain

Discriminator
s(D)

Only used
in training

yDS

yDS
,yDT

Figure 1. High-level overview of the segmentation framework
with the segmentation head. The feature extractor is illustrated
in detail in Figure 2. The domain discriminator and the gradi-
ent reversal layer (GRL) are illustrated in Figure 4, both only be-
ing necessary in training. Input data xDS ,xDT and feature data
yDS ,yDT are shown as used in training. During inference, input
and feature data is from the target domain, in this work, however,
not necessarily so.

evaluated during inference. This may be due to the fact that
the used sensors are different or the data was recorded un-
der different conditions, e.g., different illumination, season,
country, and many more. Domain adaptation aims at ad-
justing either the model to perform its tasks independently
of the target domain or at adjusting the data from the new
domain to match the distribution from the source domain,
on which the model was trained on. With both approaches
it is possible to train a model on existing datasets, leverag-
ing on the already available labels. Domain adaptation has
therefore become one very important research field in ma-
chine learning. Formally spoken, domain adaptation trans-
fers the knowledge about the source domainDS to the target
domain DT , between which there is a domain shift.

Following the classification of [40] we investigate an ap-
proach for homogeneous domain adaptation in this work,
as the feature spaces between the source and the target do-
main are identical with the same feature dimension. Do-
main adaptation can further be classified either as super-
vised, semi-supervised or unsupervised. In contrast to
(semi-)supervised approaches, where there are still (small)

amounts of labeled images of the target domain needed, un-
supervised domain adaptation only uses the labels of the
source domain and can therefore be used with no further
labeling costs on any new domain. This makes unsuper-
vised approaches especially interesting for tasks, where the
labeling is very time-consuming and therefore costly, e.g.,
semantic image segmentation, where manual labeling can
take up to 90 minutes per image [9].

Unsupervised domain adaptation is also of great inter-
est in the field of automated driving, as it allows the sim-
ple transferability of models to new sensor setups, e.g., new
camera sensors. This is especially important for machine
learning models in the perception layer of automated ve-
hicles, as these models directly extract information about
the car’s surroundings. A typical application here is again
semantic segmentation, which outputs the semantic infor-
mation for each pixel in an image, such as the location of
other traffic participants or the location of the road itself. As
exemplary datasets we will use Cityscapes [9], KITTI [15]
and Berkeley DeepDrive [44], which are all well-known in
the research field of automated driving. As the task used in
this work we select semantic segmentation, which aims to
assign each pixel in an image to one predefined object class.
As already mentioned, it is as well a task which needs time-
consuming and costly labeling as it is important for the per-
ception in automated vehicles, which makes it an interesting
subject of unsupervised domain adaptation research.

Our contribution with this work is threefold. Firstly, we
adapt a known technique for unsupervised domain adapta-
tion [13] to the task of semantic segmentation. Secondly, we
show that this approach significantly improves the accuracy
in the target domain, but surprisingly also in the source do-
main. Thirdly, we provide an analysis indicating that the
used approach does indeed perform a domain adaptation
and forces our model to learn domain-invariant features.

The paper is structured as follows. In Section 2 we pro-
vide related work in the field of domain adaptation for vi-
sual tasks. In Section 3 we present the methods and mea-
sures used for semantic segmentation and domain adapta-
tion. Section 4 introduces the employed datasets and de-
scribes the training of our model. Finally we will present
results and some further analysis in Section 5, before pro-
viding conclusions in Section 6.

2. Related Work
As already mentioned, domain adaptation can be

achieved with different approaches. Typically, the ap-
proaches can be arranged into (semi-)supervised and un-
supervised approaches. Recently, several publications pro-
vided good overviews on the entire topic of domain adap-
tation for vision tasks regarding both shallow methods and
deep methods for deep neural networks [39, 10, 40]. In the
following section, the related work for visual domain adap-

tation in neural networks will be presented.
(Semi-)Supervised Domain Adaptation aims at adapt-

ing a machine learning system to a new domain for which
there are (some) labels given. Due to the ever improv-
ing techniques for unsupervised domain adaptation and
the above-mentioned advantages, supervised approaches
[29, 35, 43] are becoming less popular. Aiming at domain
adaptation generalization [27], supervised approaches have
been used lately. However, we decide to employ an unsu-
pervised approach, since we see greater potential in using
vast amounts of (cheap) unlabeled data.

Unsupervised Domain Adaptation only relies on the
labels of the source domain and unlabeled data for the tar-
get domain. The tasks performed by such a model can be
diverse. There are typically two approaches that are used
for unsupervised domain adapation. The first approach uses
a style-transfer of the input images. The authors of [2] per-
formed a domain adaptation by using an image style transfer
to learn a depth estimation network on video game images
that can afterwards be used for real world data. Many meth-
ods use generative adversarial networks (GANs) for such a
transfer [5], e.g., for person re-identification under diverse
lighting conditions [3, 11]. Also autoencoder networks can
be used for this kind of domain adaptation [25]. So-called
domain separation networks to perform an unsupervised do-
main adaptation have been proposed in [6] on low resolution
images.

A second approach would be to learn domain-invariant
features from the data. Ganin et al. introduced this approach
with their additional domain discriminator network and the
gradient reversal layer (GRL) that forces the feature extrac-
tor to produce domain-invariant representations on low res-
olution images [13]. They showed later that this approach
also works for person re-identification [14]. These methods
that try to learn domain-invariant features or feature projec-
tions [23, 24, 30, 31, 37, 42] belong to the second approach.
A hybrid method was introduced with the DupGAN that
forces domain-invariant representation and performs a style
transfer, using an encoder, a generator, and two discrimi-
nators [20]. Another method tries to detect “landmarks” in
the source dataset that are distributed most similar to the
target dataset [16]. Although most approaches only use do-
main adaptation for two domains, it is possible to employ
multiple domains for domain adaptation [46]. Rozantsev et
al. introduced an approach that can be used semi- and un-
supervised, employing auxiliary residual networks predict-
ing parameters for the target domain network [32]. Another
combination of methods combines a discriminative model
and weight sharing with a GAN loss [38].

All of the above-mentioned approaches are used for vi-
sual domain adaptation, but only on toy examples and low-
resolution datasets and mostly for classification tasks. In the
field of automated driving datasets a much higher resolu-

tion is used and the tasks, e.g., object detection and domain
adaptation, are much more complex. Chen et al. [8] built
upon the well-known Faster R-CNN with adaptation on
image and instance level, but also upon the work of Ganin
et al. [13]. Another approach that learns feature transforma-
tions using a conditional generator network was introduced
by Hong et al. [19], while the authors of [21] use a sim-
ple activation matching. A hybrid approach that uses an
image space and feature space alignment by using a GAN
approach was presented in [17], one that employs a single
network for each of the two tasks in [45]. Domain adversar-
ial training in combination with weight sharing was used by
Hoffmann et al. [18]. GAN approaches are employed either
for style transfer [22], or to bring the feature representations
close to the source domain [34]. Murez et al. [28] also use
a network for style transfer but add extra losses to be able
to reconstruct both source and target images from the fea-
ture representations and enforce the extracted features to be
indistinguishable. An approach to improve domain adap-
tation is to utilize task-specific decision boundaries of the
used network and align the distributions of the source and
target domain [33].

We decide to build upon the approach by Ganin et al. [13]
for two reasons. Firstly, it is a simple approach that can be
used to extend any network that extracts features, regard-
less of the intended application, e.g., semantic segmentation
or object detection. Secondly, it is an approach that does
not use style transfer and does therefore not alter the input
images, but forces the network to learn domain-invariant,
better generalizing features. It seems much safer to have a
model trained directly on unaltered images, than to perform
style transfer first and then use a network that has never seen
the unaltered images.

3. Method and Measures
In this section, the methods for semantic segmentation,

domain adaptation, and the network architectures are pre-
sented. Furthermore, a measure for the domain shift is in-
troduced that is later used for further analysis of our results
in Section 5.2.

3.1. Semantic Segmentation

Semantic image segmentation is the task of finding
a transformation of an input image into an image of
semantically-related parts, known as a segmentation mask.
To accomplish this, a neural network assigns each pixel to a
specific predefined class. In our work we adopt a segmenta-
tion network based on the DeepLabv3 [7] with some im-
provements by using the WideResNet38 [41] as a feature
extractor, which is pre-trained on the ImageNet corpus. The
architecture can be thought of as a two-part network with a
feature extractor (Figure 2), which extracts meaningful fea-
tures from the images, and a segmentation head, which per-

Conv

Max Pooling

Batch Norm. + ReLU

ResBlock-A[128,128]

2×ResBlock-B[128,128]

Batch Norm. + ReLU

ResBlock-A[256,256]

2×ResBlock-B[256,256]

Batch Norm. + ReLU

ResBlock-A[512,512]

5×ResBlock-B[512,512]

Batch Norm. + ReLU

ResBlock-A[512,1024]

2×ResBlock-B[512,1024]

Batch Norm. + ReLU

ResBlock-BN[512,1024, 2048]

Batch Norm. + ReLU

ResBlock-BN[1024, 2048,4096]

Batch Norm. + ReLU

L = 0

L = 6

L = 12

L = 24

L = 30

L = 33

L = 36

xDS
,xDT

yDS
,yDT

Figure 2. Architecture of the WideResNet-38 feature extrac-
tor used in our semantic segmentation framework. The feature
extractor is provided with the images x from either domain and
extracts corresponding feature maps y. The three types of Res-
Blocks are illustrated in Figure 3.

forms the transformation of these features into a segmenta-
tion map corresponding to the input image [4]. The dataflow
is depicted in the upper path of Figure 1. We control the out-
put stride (ratio between input resolution and output resolu-
tion) by decreasing the stride of several convolutions from
two to one in a bottom-up fashion and increasing the dila-
tion rate instead. Contrary to what was proposed by [41],
we do not incorporate dropout in our network, since it led
to slightly worse segmentation results.

The image x ∈ GH×W×C with image pixel x(i) ∈ G,

ResBlock-{A,B}[m,n] ResBlock-BN[`,m, n]

x

BatchNorm

ReLU

(Dilated) Conv(3,m)

BatchNorm

ReLU

(Dilated) Conv(3,n)

y

x

Conv(1, `)

BatchNorm

ReLU

(Dilated) Conv(3,m)

BatchNorm

ReLU

(Dilated) Conv(1,n)

y

Figure 3. Structure on the ResBlocks used in the feature extrac-
tor. On the left, the ResBlock-A and -B are depicted. The only
difference between these blocks is that the first BatchNorm and
ReLU (dashed) are omitted for ResBlock-A. On the right side,
the ResBlock-BN is depicted which uses an additional convolu-
tion layer and other kernel sizes for the first and last convolution.
The parameters m and n denote the number of feature maps pro-
duced by the two convolutional layers in the ResBlock-A and -B
and ` denotes the number of feature maps for the additional convo-
lutional layer in the ResBlock-BN. The first number in the paren-
theses of each convolutional layer denotes the used kernel size.

where G is the set of gray values, i is the pixel index,H and
W are the image height and width in pixels, and C = 3 is
the number of color channels from set C = {1, 2, 3}, is used
as the input to the neural network. The feature extractor
extracts 4096 feature maps y with a resolution dependent
on the resolution of the input image. During the training the
network is provided with random crops of the input image
that all have the same resolution. In the standard approach a
crop size of 700×700 is used, but due to the lower resolution
of the KITTI and BDD100K dataset we adapted the crop
size to 250×500. Naturally, this leads to a drop in absolute
performance, which, for the purpose of this work, is not a
considered problem. With the fixed crop size during the
training the extracted feature maps have a resolution of 16×
32 pixels.

The segmentation head then transforms these feature
maps into output scores P ∈ IH×W×|S|, where S =
{1, 2, ..., 19} denotes the set of classes with cardinality
|S| = 19 and I = [0, 1]. These output scores can be thought
of as a posterior probability (score) P (i, s) for each class

s ∈ S at pixel index i. After searching for the maximum,
the segmentation mask m = argmaxs∈S P ∈ SH×W is
provided. To measure the accuracy of this map with respect
to the ground truth labels, the intersection over union (IoU)
is computed [12] as follows:

IoU =
TP

TP + FP + FN
, (1)

where TP, FP, and FN are the numbers of true positive,
false positive, and false negative pixels for one correspond-
ing label and segmentation mask pair. The mean IoU
(mIoU) is then computed as the average IoU over a given
set of images.

3.2. Domain Adaptation

Unsupervised domain adaptation in the context of se-
mantic segmentation aims at keeping the mIoU at a high
level independently from the used data set. As already
mentioned, there are mainly two different approaches for
domain adaptation for visual tasks. Either the images are
adjusted to fit the distribution of the source domain before
being entered into the network, or the network is trained
to learn domain-invariant feature maps y that produce ac-
curate segmentations on both datasets. Our system for do-
main adaptation is built upon the idea published by Ganin
et al. [13] where they trained a neural network in a multi-
task fashion. Similar to their work we use the feature ex-
tractor jointly for both tasks. After the feature extractor,
the feature maps are split into two branches as seen in Fig-
ure 1. The segmentation head (upper part of the network)
only receives the feature maps of the source domain DS
for which the labels are available. The domain discrimi-
nator (lower part of the network) receives both the source
and target domain feature maps. After bringing the num-
ber of feature maps gradually down from 4096 to 2 by 1×1
convolutions, the domain discriminator tries to predict the
domain from which the given feature maps came from, pro-
viding an output class map s(D) ∈ IhD×wD×|D|, with hD and
wD being the height and width of the feature maps that are
fed into the domain discriminator and |D| being the num-
ber of datasets used during training. The resolution of the
feature maps is not reduced during the reduction of feature
maps such that a patch-wise classification error can be used,
which was proposed by [36] as a local adversarial loss in
their GAN network. Just ahead of the domain discriminator
there is the gradient reversal layer (GRL) [13]. During the
forward-pass of the training this layer behaves as the iden-
tity function just passing the data through, while during the
backward-pass the gradient gets reversed. Following Ganin
et al. [13], this can be formalized as follows:

Forward-pass: Rλ(y) = y

Backward-pass:
dRλ
dy

= −λ(τ)I,
(2)

where I is the identity matrix and λ is a weighting factor
that is used in order to limit the influence of the domain dis-
criminator. Here, y denotes the feature map that is passed
through the layer Rλ(y) during the forward pass. The gra-
dients calculated by the backpropagation algorithm are de-
noted as dRλ

dy . The weighting factor λ is computed by

λ(τ) =
2

1 + exp (−10 α(τ)) − 1 (3)

and changes for each epoch τ , with α(τ) being defined as

α(τ) =

{
τ

τmax
τ < τmax

1 τ ≥ τmax,
(4)

with τmax being the iteration number, from which on the
influence of the domain discriminator should not be limited
anymore. One iteration equals one processed minibatch.

3.3. Measures for the Domain Shift

With the employed approach, it is initially not unambigu-
ous that the increase in accuracy in the source and target
domain is actually due to the fact that domain-invariant fea-
tures were learned. It would also be plausible that each ad-
ditional branch after the feature extractor, which is trained
on a different task, increases the magnitude of gradients in
the feature extractor and thus enables more efficient learn-
ing, e.g., by preventing a vanishing gradient.

To analyze the hypothesis of domain-invariant features,
we examined the feature maps of the feature extractor for
the source and target dataset of both the network trained
without the domain discriminator and the network trained
with the domain discriminator. The feature map tensor after
each activation layer has the size (hL×wL×fL), with hL
and wL being the height and width of the feature maps in
layer L, which itself is dependent on the input resolution
that is different for all datasets used during inference. The
term fL denotes the number of feature maps in layer L. For
the analysis we average the feature maps over hL and wL
during inference, leaving us with a vector φφφL of length fL,
that holds the mean activation value for each feature map
in that layer. We can then compute the mean-squared error
(MSE) distance between two of those vectors as follows:

DMSE(φφφ
a
L,φφφ

b
L) = ||φφφaL −φφφbL||2, (5)

where a and b denote the different datasets the activation
vector was produced by. We assume that the MSE DMSE
is related to the domain shift (higher DMSE means higher
domain shift), if dataset a comprises the training data and
dataset b comprises the inference data.

4. Databases and Training
In this section, the databases used for training and eval-

uation are introduced. In the field of domain adaptation,

Gradient Reversal Layer (GRL)

Conv(1,2048) + ReLU

Conv(1,1024) + ReLU

Conv(1,512)+ ReLU

Conv(1,256) + ReLU

Conv(1,128) + ReLU

Conv(1,64) + ReLU

Conv(1,32) + ReLU

Conv(1,16) + ReLU

Conv(1,8) + ReLU

Conv(1,4) + ReLU

Conv(1,2)

Softmax

argmax

yDS
,yDT

s(D)

Figure 4. Architecture of the gradient reversal layer (GRL) with
the domain discriminator used for domain adaptation in Figure 1.
The network is provided with feature maps from both domains and
tries to predict an output class map s(D) that simply discriminates
between both domains.

there are several known databases for different applications.
In the context of this work we limit ourselves to real-world
(not simulated) automotive datasets. Subsequently, we de-
scribe the training method and parameters used for training
of the segmentation network with and without domain adap-
tation.

4.1. Databases

In this work we conducted experiments with three dif-
ferent automotive datasets, all providing labels for semantic
segmentation and all being recorded under diverse condi-
tions with a different sensor. For our experiments different
subsets of the three datasets are used. Table 1 provides a
description and composition of the individual subsets.

Cityscapes is used as the source dataset in all experi-
ments. It consists of 2975 training images Dtrain

CS and 500

Table 1. The names and number of files for the subsets we used in
our experiments. The KITTI train subsets are randomly sampled
from the raw dataset.

Dataset Data Subset # Files Labels Used

Cityscapes
Dtrain

CS 2975 X
Dval

CS 500 X
Dtest

CS 1525 X

KITTI

Dtrain,2975,c
KITTI 2975
Dtrain,2975

KITTI 2975
Dtrain,5000

KITTI 5000
Dtrain,10000

KITTI 10000
Dval

KITTI 200 X
Dtest

KITTI 200 X

BDD100K
Dtrain

BDD 7000
Dval

BDD 1000 X

validation images Dval
CS, for each of which there are finely

annotated labels. The 1525 test images Dtest
CS can only be

evaluated on the Cityscapes benchmark server. The dataset
was recorded in 50 different cities in Germany and cities
close to Germany using an automotive-grade camera with
an OnSemi AR0331 sensor. The recordings were made un-
der moderate to good weather conditions throughout spring,
summer and autumn, so there are no recordings during bad
weather or winter. All recordings were made during the day.
The provided color images have a resolution of 1024×2048
pixels. The dataset is labeled with 19 classes that are used
during training and inference [9].

KITTI is used as the first target dataset in all experi-
ments. Originally, the KITTI dataset did not provide se-
mantically segmented labels, but only labels for the object
detection. However, a subset for which semantic labels have
been available exists since 2015, which is called KITTI-15
[1]. There are 200 training images, which we use for vali-
dation Dval

KITTI, and 200 test images Dtest
KITTI, but similar to

the Cityscapes dataset there are only labels for the test im-
ages on the KITTI benchmark server. The labeling followed
the same policy as in Cityscapes. The raw dataset consists
of 48893 unlabeled images from which we randomly sam-
pled images used for the unsupervised domain adaptation.
For our initial experiments with two domains we sampled
the same amount of images Dtrain,2975,c

KITTI as there are in the
Cityscapes training set. For the subsequent experiments
we sampled 10000 images Dtrain,10000

KITTI , as well as 5000
images Dtrain,5000

KITTI and 2975 images Dtrain,2975
KITTI , with the

smaller sets being a subset of the bigger sets Dtrain,10000
KITTI ⊃

Dtrain,5000
KITTI ⊃ Dtrain,2975

KITTI . The dataset was recorded in and
around the German city Karlsruhe using a Point Grey FL2-
14S3C-C camera with a Sony ICX267 sensor. The provided
color images have a resolution of 375×1250 pixels [15].

Berkeley DeepDrive (BDD100K) is used as an addi-
tional target dataset in experiments with more than two do-
mains. The dataset consists of 100000 videos each with
a length of 40 seconds. The videos were gathered via
crowd sourcing, which means that volunteers contributed
the videos recorded by their dashcam. Therefore, no single
sensor can be specified for this dataset. The videos were
recorded on the entire territory of the U.S.A. Cities, high-
ways and rural regions were captured under various weather
conditions and times of the day. The BDD100K also offers
a subset with pixel labels, as with the KITTI dataset. 8000
images were annotated, 7000 of them as training images
Dtrain

BDD and 1000 validation images Dval
BDD. Although there

is a test set with 2000 images, no labels are provided and
there is currently no evaluation server available. The label-
ing also followed the same policy as in Cityscapes. The
images have a resolution of 720×1280 pixels [44].

4.2. Training and Domain Adaptation Stages 1 & 2

The training of the segmentation network follows a two-
stage training based on [7], which is also described in [4]
and [26]. Due to the different resolutions of the used
datasets the random scaling is performed in a range of
100 % to 200 % and the crop size is set to 250×500. The
images from all data sets were cropped to an aspect ratio
of 2:1 before training. The domain discriminator is initial-
ized with random weights. In the discriminator network
(index “D”) we use a dropout value pD = 0.7 for stages
1 and 2. For stage 1 the weighting factor λ follows (4) with
τmax = 18000. During stage 2 we use a weighting factor
λ = 1. The initial learning rate for the domain discrimi-
nator used for stage 1 is ηD,0 = 0.01, which is halved in
the 2nd stage to ηD,0 = 0.005. The learning rate schedule
follows a power scheduling:

ηD(τ) =
ηD,0

(1 + 10 γ(τ)0.75)
, (6)

where τ is the iteration index and γ = τ
τend

with τend be-
ing the maximum number of iterations. The initial learning
rate for the feature extractor (index “F”) used for stage 1 is
ηF,0 = 0.001, which is halved in stage 2 to ηF,0 = 0.0005.
The learning rate follows a polynomial scheduling:

ηF(τ) = ηF,0(1− γ)c, (7)

with c = 0.9. The learning rate for the weights of the seg-
mentation head follows the same schedule, but is multiplied
by a factor of 10 and the learning rate for the bias weights in
the segmentation head is multiplied by 20. Both the feature
extractor and segmentation head also use L2 regularization
with a weighting value of 1 · 10−4. For stage 1 we chose
τend = 90000 and for stage 2 we chose τend = 120000. We
use a momentum of β = 0.9. The segmentation head and
the domain discriminator both employ a cross entropy loss
during training.

Table 3. Validation set mIoU for multiple datasets without and with unsupervised domain adaptation. The results are obtained by networks
trained for stages 1 and 2. Only Dtrain

CS is used as the source domain DS and all other training subsets are used as the unlabeled target
domain DT .

Training Stage Trained on Evaluation Results (mIoU)
Dval

CS Dval
KITTI Dval

BDD

1

Dtrain
CS 51.2 % 40.1 % 25.2 %

Dtrain
CS ∪ Dtrain,2975

KITTI ∪ Dtrain
BDD 54.7 % 46.4 % 48.1 %

Dtrain
CS ∪ Dtrain,5000

KITTI ∪ Dtrain
BDD 55.3 % 49.0 % 48.9 %

Dtrain
CS ∪ Dtrain,10000

KITTI ∪ Dtrain
BDD 54.1 % 47.5 % 47.3 %

2 Dtrain
CS 51.5 % 40.5 % 26.1 %

Dtrain
all = Dtrain

CS ∪ Dtrain,5000
KITTI ∪ Dtrain

BDD 57.2 % 56.7 % 49.9 %

Table 2. mIoU for Cityscapes and KITTI validation sets without
(1st row) and with (2nd row) unsupervised domain adaptation. The
results for networks trained only for stage 1:

Trained on Evaluation Results (mIoU)
Dval

CS Dval
KITTI

Dtrain
CS 51.2 % 40.1 %

Dtrain
CS ∪ Dtrain,2975,c

KITTI 53.6 % 46.3 %

5. Experiments and Results
In this section we will evaluate the experiments on do-

main adaptation. We will start with experiments on two do-
mains, using Cityscapes as our source and KITTI as our un-
labeled target domain. In the subsequent experiments we
will use BDD100K as an additional unlabeled target do-
main. Finally, an analysis of the learned domain-invariant
feature maps will follow.

5.1. Discussion of Domain Adaptation

Our initial experiments were conducted using Cityscapes
as our source Domain DS and KITTI as out target domain
DT . The results are shown in Table 2. The effect of the
unsupervised domain adaptation can be clearly seen by the
mIoU increase of 6.2 % absolute on KITTI. A surprising re-
sult is that not only in the target domain, but even in the
source domain we obtain an increase in mIoU (2.4 % abso-
lute)1. We cast both improvements on the mere fact of ad-
ditional data for training. The important facts are: Firstly,
this additional training material does not require labels and
secondly, it may even stem from a different domain.

Intuitively one would use the same amount of images
from each dataset per minibatch (1:1:1), but preliminary ex-
periments have shown that a ratio of (1:2:1), i.e., two images
from the KITTI data set with one image from Cityscapes

1It has to be noted that the KITTI subset Dtrain,2975,c
KITTI used for this

experiment included images from the calibration and person categories of
the KITTI dataset. However, for the following experiments we use KITTI
subsets, which exclude these categories as they are originally not intended
for training.

and one from BDD100K, yields better results on the KITTI
and BDD100K validation sets. We also observed that it is
advantageous for the performance on the target domains if
the domain discriminator has to distinguish between all do-
mains and not only between source and target domain.

The results for multiple datasets are presented in Ta-
ble 3, showing the mIoU for different validation sets. The
first row serves as our baseline, as these results are ob-
tained with a segmentation network that was solely trained
on the Cityscapes training set Dtrain

CS and has not seen im-
ages from any other domain. It can be seen that the mIoU
for the network with the domain adaptation increases for
the source domain (Cityscapes) as well as for the target do-
mains (KITTI and BDD100K), implying that a multi-task
gain exists and the feature extractor network is forced to
extract domain-invariant, better generalizing features.

It can also be seen that the usage of more unlabeled data
further improves performance but has a sweet spot and de-
creases again for too much unlabeled data. The sweet spot
is reached for 5000 images on KITTI, while both 2975 and
10000 images yield a somewhat lower performance. With
the best approach from stage 1 a stage 2 training was per-
formed, which further increased the mIoU on all validation
sets. The final network yields a performance on Dval

KITTI,
which is nearly en par with results on Dval

CS. We obtain a
gain of by 16.2 % mIoU absolute on the KITTI validation
set by unsupervised domain adaptation and moreover we
obtain a gain of 5.7 % mIoU on the Cityscapes validation
set. We also see a large gain on the BDD100K subsetDval

BDD

where we obtain an increase of 23.8 % mIoU absolute. For
the sake of clarity, the dataset that is used for training with
unsupervised domain adaptation in stage 2 is referred to as
Dtrain

all .
For our final evaluation we tested the final stage 2 net-

work against the stage 2 baseline on the two test sets Dtest
CS

and Dtest
KITTI. The results are presented in Table 4. We ob-

tain a gain of 15.4 % mIoU absolute on Dtest
KITTI after un-

supervised domain adaptation, and in addition we also ob-
tain a gain of 3.8 % mIoU absolute on the in-domain data

0 6 12 24 30 33 36
0

1

2

3
·10−4

Layer L

D
M

S
E

eq
.
(5
)

a) Dtrain
CS - Dval

CS

w/o adaptation with adaptation

0 6 12 24 30 33 36
0

2

4

6
·10−2

Layer L

b) Dtrain
CS - Dval

KITTI

In-domain data:
Cityscapes

Data with domain shift:
Cityscapes → KITTI

Figure 5. Results of the feature map activation analysis for a) in-domain data and b) data with a domain shift. Results are shown for
the non-adapted network (no markers) and the adpated network (markers ◦◦◦). Please note that the scaling of the left y-axis is two orders of
magnitude smaller to visualize the effect also for the in-domain data.

Table 4. Test set mIoU for Cityscapes and KITTI without and
with unsupervised domain adaptation. The results are for networks
trained for stages 1 and 2.

Trained on Evaluation Results (mIoU)
Dtest

CS Dtest
KITTI

Dtrain
CS (w/o adaptation) 56.0 % 44.1 %
Dtrain

all (with adaptation) 59.8 % 59.5 %

Dtest
CS . On the KITTI test set our domain-adapted semantic

segmentation achieved a surprisingly good 5th rank with an
mIoU of 59.5 % and without having used any KITTI labels
during training 2.

5.2. Further Analysis

The results presented above allow for two hypotheses.
The increase in accuracy could either be due to the fact
that the gradients of deeper layers in the feature extractor
are larger by the multi-task approach, or we actually learn
domain-invariant features. We used the settings with two
domains to analyze the features that are extracted by both a
network trained without and a network trained with domain
adaptation. We extracted activation vectors as described in
Section 3.3 for the Cityscapes subsets Dtrain

CS and Dval
CS and

for the KITTI subsetDval
KITTI for both network variants. Af-

terwards, we computed the DMSE (5) for all vectors from
the validation sets with their corresponding vector from the
Cityscapes train set. The results are depicted in Figure 5. It
can be seen that the difference for the network trained with-
out domain adaptation is higher than for the network trained
with domain adaptation. This holds even true for data from
the same domain as can be seen in subfigure a), even so this

2We could not test on Dtest
BDD, since an evaluation server does not seem

to be set up yet and no test labels are provided.

effect is only noticeable on a scale which is smaller by two
orders of magnitude.

What is immediately noticeable is that the differences
in activations are particularly large for the layers L ∈
{0, 6, 12, 24, 36}. If one compares these layers with Fig-
ure 2, then we realize that these are exactly the layers which,
in contrast to the residual units, are not extended by a resid-
ual path. It seems that these layers contain domain-specific
knowledge in particular.

6. Conclusions
In this work we presented an unsupervised domain adap-

tation technique to semantic segmentation, which has ad-
vantages over style transfer approaches with generative
models, as it does not modify the input data to the network.
This is particularly important from a safety point of view, as
it cannot be said with certainty how a segmentation network
reacts to possible artifacts in generated images. We have
shown that this approach is also very convenient, as existing
networks can easily be extended by a domain discrimina-
tor and in fact domain-invariant, better generalizing features
are learned. In consequence we were able to show that with
our technique both the source and the target domain take
profit from additional unlabeled data of the target domain.
On the target domain KITTI test set, performance increases
by an impressive 15 % mIoU absolute. In consequence, our
domain-adapted semantic segmentation achieved a surpris-
ingly good 5th rank on the KITTI test set, without having
used any KITTI labels during training.

7. Acknowledgment
The authors gratefully acknowledge support of this work

by Volkswagen Group Research, Wolfsburg, Germany.

References
[1] H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger,

and C. Rother. Augmented Reality Meets Computer Vision:
Efficient Data Generation for Urban Driving Scenes. Inter-
national Journal of Computer Vision, 126(9):961–972, Sept.
2018. 6

[2] A. Atapour-Abarghouei and T. P. Breckon. Real-Time
Monocular Depth Estimation Using Synthetic Data With Do-
main Adaptation via Image Style Transfer. In Proc. of CVPR,
pages 2800–2810, Salt Lake City, UT, USA, June 2018. 2

[3] S. Bak, P. Carr, and J.-F. Lalonde. Domain Adap-
tation Through Synthesis for Unsupervised Person Re-
identification. In Proc. of ECCV, pages 189–205, Munich,
Germany, Sept. 2018. 2

[4] J.-A. Bolte, A. Bär, D. Lipinski, and T. Fingscheidt. Towards
Corner Case Detection for Autonomous Driving. arXiv,
(1902.09184), Feb. 2019. 3, 6

[5] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-
ishnan. Unsupervised Pixel-Level Domain Adaptation With
Generative Adversarial Networks. In Proc. of CVPR, pages
3722–3731, Honolulu, HI, USA, July 2017. 2

[6] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and
D. Erhan. Domain Separation Networks. In Proc. of NIPS,
pages 343–351, Barcelona, Spain, Dec. 2016. 2

[7] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking Atrous Convolution for Semantic Image Segmenta-
tion. arXiv, (1706.05587), June 2017. 3, 6

[8] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool. Do-
main Adaptive Faster R-CNN for Object Detection in the
Wild. In Proc. of CVPR, pages 3339–3348, Salt Lake City,
UT, USA, June 2018. 3

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
Cityscapes Dataset for Semantic Urban Scene Understand-
ing. In Proc. of CVPR, pages 3213–3223, Las Vegas, NV,
USA, June 2016. 2, 6

[10] G. Csurka. Domain Adaptation for Visual Applications: A
Comprehensive Survey. arXiv, (1702.05374), Mar. 2017. 2

[11] W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and
J. Jiao. Image-Image Domain Adaptation With Preserved
Self-Similarity and Domain-Dissimilarity for Person Re-
Identification. In Proc. of CVPR, pages 994–1003, Salt Lake
City, UT, USA, June 2018. 2

[12] M. Everingham, S. M. Eslami, L. Gool, C. K. Williams,
J. Winn, and A. Zisserman. The Pascal Visual Object Classes
Challenge: A Retrospective. International Journal of Com-
puter Vision (IJCV), 111(1):98–136, Jan. 2015. 4

[13] Y. Ganin and V. Lempitsky. Unsupervised Domain Adap-
tation by Backpropagation. In Proc. of ICML, pages 1180–
1189, Lille, France, July 2015. 2, 3, 4

[14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
Adversarial Training of Neural Networks. The Journal
of Machine Learning Research (JMLR), 17(1):2096–2030,
2016. 2

[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets
Robotics: The KITTI Dataset. International Journal of

Robotics Research (IJRR), 32(11):1231–1237, Aug. 2013. 2,
6

[16] B. Gong, K. Grauman, and F. Sha. Connecting the Dots With
Landmarks: Discriminatively Learning Domain-Invariant
Features for Unsupervised Domain Adaptation. In Proc. of
ICML, pages 222–230, Atlanta, Georgia, USA, June 2013. 2

[17] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko,
A. Efros, and T. Darrell. CyCADA: Cycle-Consistent Adver-
sarial Domain Adaptation. In Proc. of ICML, pages 1989–
1998, Stockholm, Sweden, July 2018. 3

[18] J. Hoffman, D. Wang, F. Yu, and T. Darrell. FCNs in the
Wild: Pixel-Level Adversarial and Constraint-Based Adap-
tation. arXiv, (1612.02649), Dec. 2016. 3

[19] W. Hong, Z. Wang, M. Yang, and J. Yuan. Conditional Gen-
erative Adversarial Network for Structured Domain Adapta-
tion. In Proc. of CVPR, pages 1335–1344, Salt Lake City,
UT, USA, June 2018. 3

[20] L. Hu, M. Kan, S. Shan, and X. Chen. Duplex Generative
Adversarial Network for Unsupervised Domain Adaptation.
In Proc. of CVPR, pages 1498–1507, Salt Lake City, UT,
USA, June 2018. 2

[21] H. Huang, Q. Huang, and P. Krahenbuhl. Domain Tans-
fer Through Deep Activation Matching. In Proc. of ECCV,
pages 590–605, Munich, Germany, Sept. 2018. 3

[22] S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu,
and S.-H. Lai. AugGAN: Cross Domain Adaptation With
GAN-based Data Augmentation. In Proc. of ECCV, pages
718–731, Munich, Germany, Sept. 2018. 3

[23] G. Kang, L. Zheng, Y. Yan, and Y. Yang. Deep Adversarial
Attention Alignment for Unsupervised Domain Adaptation:
The Benefit of Target Expectation Maximization. In Proc. of
ECCV, pages 401–416, Munich, Germany, Sept. 2018. 2

[24] E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised Do-
main Adaptation for Zero-Shot Learning. In Proc. of ICCV,
pages 2452–2460, Las Condes, Chile, Dec. 2015. 2

[25] H. Li, S. Jialin Pan, S. Wang, and A. C. Kot. Domain Gen-
eralization With Adversarial Feature Learning. In Proc. of
CVPR, pages 5400–5409, Salt Lake City, UT, USA, June
2018. 2

[26] J. Löhdefink, A. Bär, N. M. Schmidt, F. Hüger, P. Schlicht,
and T. Fingscheidt. GAN vs. JPEG2000 Image Compres-
sion for Distributed Automotive Perception: Higher Peak
SNR Does Not Mean Better Semantic Segmentation. arXiv,
(1902.04311), Feb. 2019. 6

[27] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto.
Unified Deep Supervised Domain Adaptation and General-
ization. In Proc. of ICCV, pages 5715–5725, Venice, Italy,
Oct. 2017. 2

[28] Z. Murez, S. Kolouri, D. Kriegman, R. Ramamoorthi, and
K. Kim. Image to Image Translation for Domain Adaptation.
In Proc. of CVPR, pages 4500–4509, Salt Lake City, UT,
USA, June 2018. 3

[29] K. S. Neethu and D. Varghese. An Incremental Semi-
supervised Approach for Visual Domain Adaptation. In
Proc. of ICCSP, pages 1343–1346, Chennai, India, Apr.
2017. 2

[30] P. O. Pinheiro. Unsupervised Domain Adaptation With Sim-
ilarity Learning. In Proc. of CVPR, pages 8004–8013, Salt
Lake City, UT, USA, June 2018. 2

[31] Z. Ren and Y. Jae Lee. Cross-Domain Self-Supervised Multi-
Task Feature Learning Using Synthetic Imagery. In Proc. of
CVPR, pages 762–771, Salt Lake City, UT, USA, June 2018.
2

[32] A. Rozantsev, M. Salzmann, and P. Fua. Residual Parameter
Transfer for Deep Domain Adaptation. In Proc. of CVPR,
pages 4339–4348, Salt Lake City, UT, USA, June 2018. 2

[33] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum
Classifier Discrepancy for Unsupervised Domain Adapta-
tion. In Proc. of CVPR, pages 3723–3732, Salt Lake City,
UT, USA, June 2018. 3

[34] S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and
R. Chellappa. Learning From Synthetic Data: Addressing
Domain Shift for Semantic Segmentation. In Proc. of CVPR,
pages 3752–3761, Salt Lake City, UT, USA, June 2018. 3

[35] S. Saxena, S. Pandey, and P. Khanna. A Semi-Supervised
Domain Adaptation Assembling Approach for Image Classi-
fication. Pattern Analysis and Applications, 21(3):813–827,
Aug. 2018. 2

[36] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from Simulated and Unsupervised
Images Through Adversarial Training. In Proc. of CVPR,
pages 2242–2251, Honolulu, HI, USA, July 2017. 4

[37] R. Shu, H. Bui, H. Narui, and S. Ermon. A DIRT-T Ap-
proach to Unsupervised Domain Adaptation. In Proc. of
ICLR, Vancouver, Canada, Apr. 2018. 2

[38] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversar-
ial Discriminative Domain Adaptation. In Proc. of CVPR,
Honulu, HI, USA, July 2017. 2

[39] H. Venkateswara, S. Chakraborty, and S. Panchanathan.
Deep-Learning Systems for Domain Adaptation in Com-
puter Vision: Learning Transferable Feature Representa-
tions. IEEE Signal Processing Magazine, 34(6):117–129,
Nov. 2017. 2

[40] M. Wang and W. Deng. Deep Visual Domain Adaptation: A
Survey. arXiv, (1802.03601), May 2018. 1, 2

[41] Z. Wu, C. Shen, and A. van den Hengel. Wider or Deeper:
Revisiting the ResNet Model for Visual Recognition. arXiv,
Nov. 2016. 3

[42] L. Yan, B. Fan, S. Xiang, and C. Pan. Adversarial Domain
Adaptation With a Domain Similarity Discriminator for Se-
mantic Segmentation of Urban Areas. In Proc. of ICIP, pages
1583–1587, Athens, Greece, Oct. 2018. 2

[43] T. Yao, Y. Pan, C.-W. Ngo, H. Li, and T. Mei. Semi-
Supervised Domain Adaptation With Subspace Learning for
Visual Recognition. In Proc. of CVPR, pages 2142–2150,
Boston, MA, USA, June 2015. 2

[44] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and
T. Darrell. BDD100K: A Diverse Driving Video Database
With Scalable Annotation Tooling. arXiv, (1805.04687),
Aug. 2018. 2, 6

[45] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei. Fully Convolu-
tional Adaptation Networks for Semantic Segmentation. In
Proc. of CVPR, pages 6810–6818, Salt Lake City, UT, USA,
June 2018. 3

[46] H. Zhao, S. Zhang, G. Wu, J. M. F. Moura, J. P. Costeira, and
G. J. Gordon. Adversarial Multiple Source Domain Adapta-
tion. In Proc. of NIPS, pages 8568–8579, Montreal, Canada,
Dec. 2018. 2

