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ABSTRACT
Outdoor camera relocalization from a single RGB image remains a
challenging task in autonomous driving. State-of-the-art method
is based on training a scene coordinate regression (SCoRe) neural
network with a 3D mesh model [3]. In this work, we look into
training the SCoRe network with 3D point clouds. Our results have
shown strong evidence that 3D points optimized under multi-view
constraints, such as epipolar constraints, reprojection errors, pho-
tometric consistency and global visibility, are effective for training
the SCoRe network. This also inspires follow-up research on train-
ing with the above constraints, i.e. without explicit 3D models,
to achieve a robust and generalized SCoRe network for outdoor
relocalization.

1 INTRODUCTION
Camera relocalization is an essential component of visual-SLAM in
autonomous driving and augmented reality [18, 22]. Camera relo-
calization to estimate 6DoF camera poses w.r.t. a known 3D scene
is an ongoing research problem. Recent research works exploiting
learning-based methods mainly revolve around direct pose regres-
sion [4, 13–15] and scene coordinate regression [1, 3, 5, 17, 24].

For outdoor camera relocalization from a single RGB image,
state-of-the-art relocalization accuracy is achieved based on scene
coordinate regression (SCoRe) network trained with a 3D mesh
model [3, 5]. Such a 3D model could be time costly and impractical
to obtain, especially for outdoor scenes with large scales. Instead of
using 3D models, research works [3, 14, 17] have shown evidence
of using the deep convolutional neural network (CNN) to learn
outdoor scene geometry implicitly with a geometric constraint of
single-view reprojection error.

To inspire further research on SCoRe network learning scene
geometry implicitly with more constraints, we investigate in this
work the performance of SCoRe network trained with point clouds,
i.e. SfM point cloud [23, 25, 30] and PMVS point cloud [10]. These
point clouds are reconstructed from only RGB images under op-
timization of constraints such as multi-view epipolar constraint,
reprojection error, photometric consistency and global visibility.
Our experiments are based on the outdoor scene dataset, i.e. Cam-
bridge Landmarks [14, 15], and the state-of-the-art method for
camera relocalization from a single RGB image, i.e. DSAC++ [3].
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2 RELATEDWORK
Camera relocalization methods such as keyframe-based [11, 12] or
keypoint-based [16, 28] approaches utilize handcrafted image-level
or feature-level descriptors, while the learning-based approaches
avoid such explicit extraction and matching. With the capability
of deep CNN, direct absolute pose regression methods are possible
but they achieve coarse accuracy. On the other hand, SCoRe meth-
ods, utilizing forests [2, 6, 7, 24] or CNN [1, 3, 5, 9, 17], achieves
significantly higher accuracies. Such methods predict dense 2D-3D
correspondences that are subsequently fed into a robust RANSAC-
based scheme which estimates the final camera pose. Other camera
relocalization methods utilizing 3D-structure [8, 21] and other vari-
ants of CNN [20, 26, 27] also exist.

3 SCoRe WITH POINT CLOUDS
SfM point cloud and PMVS point cloud for an example scene from
the Cambridge Landmarks dataset [14, 15] are shown in Figure 1,
where we can see that both point clouds respect the geometric
structure of the scene. Quantitatively from Table 1, PMVS point
cloud is approximately 10 − 20 times denser than SfM point clouds.

Figure 1: Point Clouds of the Great Court scene from Cam-
bridge Landmarks [14, 15] generated with VisualSfM [29,
30]. Left: SfM point cloud. Right: PMVS point cloud.

Table 1: Details of Cambridge Landmarks dataset [14, 15]
and the approximate number of reconstructed 3D points.

Spatial # Frames # SfM # PMVS
Scene Extent Train/Test Points Points

Great Court 95 × 80m2 1532/760 0.21M 4.0M
King’s College 140 × 40m2 1220/343 0.17M 3.5M
Old Hospital 50 × 40m2 895/182 0.11M 5.9M
Shop Facade 35 × 25m2 231/103 0.06M 1.2M
St Mary’s Church 80 × 60m2 1487/530 0.42M 4.3M

*similar to other research work [3, 5], we ignored the Street scene
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The sparsity of the point clouds is more distinguishable in the
rendered depth images shown in Figure 2. Such rendered depth
images are obtained by projecting the 3D points with the ground-
truth pose and intrinsic parameters. When a pixel has multiple
projected depths, we simply assign it with the smallest depth. Pixels
without any projected depth are set to zero depth. The depth image
from SfM point cloud is particularly sparse, with valid depths only
in the strongest structural locations. On the other hand, the depth
image from PMVS point cloud is denser, covering almost the whole
structure. However, there are noisy or invalid depths in the large
homogeneous regions. In general, the rendered depth image in
DSAC++ [3] is more complete with a large percentage of valid
depths, covering both the structures and the homogeneous areas.

Figure 2: Left column: rendered depth images from the SfM
point cloud, PMVS point cloud and 3D mesh model (pro-
vided by [3]). Right column: rendered depth images over-
layed with RGB images.

4 RESULTS AND DISCUSSIONS
MeshModel vs. Point Cloud. From Table 2, we can see that train-
ing the SCoRe network with point clouds achieves overall better
relocalization results than training with a mesh model. Even though
the point clouds are more sparse than the mesh model, as observed
from the rendered depth images in Figure 2, their 3D points are suf-
ficient and probably more accurate for training the SCoRe network.
In other words, accurate ground-truth scene coordinates are more
important than completeness for camera relocalization.

Recall that the 3D point clouds are optimized under the multi-
view geometric, photoconsistent and visibility constraints. Intu-
itively, scene coordinate predictions from the SCoRe network could
be optimized with such constraints for learning good scene geome-
try as well. This idea is also in agreement with the work by [17].
Given such positive sign from the results, further research work
could be conducted to train the SCoRe network for outdoor relocal-
ization with only constraints, i.e. no 3D models.

Table 2: Median 6D localization errors of camera pose esti-
mation from RGB images using DSAC++ [3] pipeline. Best
results are marked in bold.

Mesh SfM PMVS
Scene Model [3] Point Cloud Point Cloud

Great Court 0.40m, 0.2° 0.41m, 0.2° 0.39m, 0.2°
King’s College 0.18m, 0.3° 0.13m, 0.3° 0.14m, 0.3°
Old Hospital 0.20m, 0.3° 0.21m, 0.4° 0.19m, 0.3°
Shop Facade 0.06m, 0.3° 0.06m, 0.3° 0.06m, 0.3°
St Mary’s Church 0.13m, 0.4° 0.19m, 0.6° 0.11m, 0.3°

Table 3: Median 6D localization errors of SCoRe network
trained with only Scene Coordinate Initialization step.

SfM PMVS
Scene Point Cloud Point Cloud

Great Court 0.58m, 0.2° 0.66m, 0.3°
King’s College 0.15m, 0.2° 0.15m, 0.3°
Old Hospital 0.21m, 0.4° 0.25m, 0.5°
Shop Facade 0.07m, 0.4° 0.06m, 0.3°
St Mary’s Church 0.64m, 1.6° 0.17m, 0.5°

SfM vs. PMVS Point Cloud. From Table 3, training with PMVS
point cloud achieves in general the best results with the lowest relo-
calization error. Even though there are noisy points in PMVS point
clouds resulting in some noisy scene coordinate predictions from
SCoRe network, the RANSAC-based scheme is able to reject such
outliers effectively and estimates good camera poses. In addition,
more data points (i.e. higher density in the rendered depth images)
from the PMVS point cloud are beneficial to training the SCoRe
network.

The relocalization accuracy of SfM point clouds in Table 2 are
also remarkable as it is on par with the results of the PMVS point
clouds, given the extent of sparsity of the SfM point cloud shown in
Table 1. This indicates the possibility of training the SCoRe network
with the sparse point clouds generated by visual-SLAM systems,
such as ORB-SLAM2 [19]. In addition, this could imply that SCoRe
network optimized under the multi-view epipolar constraints and
reprojection errors, i.e. without photoconsistent constraint, could
recover sufficiently good scene geometry for camera relocalization.
This is further verified with the reasonable accuracies of SfM point
cloud in Table 3, when we train the SCoRe network with only the
initializtion step, i.e. no optimization of single-view reprojection
and end-to-end optimization with ground-truth poses.

5 CONCLUSION
We have shown in this work the outstanding performance of using
point clouds which are optimized under multi-view geometric, pho-
toconsistent and visibility constraints to train the SCoRe network
for outdoor relocalization from a single RGB image. In the next
step of research, we would like to adapt such constraints to the
optimization of scene coordinate predictions in SCoRe network so
as to remove the need of explicit 3D models during training and
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achieve a more robust and generalized SCoRe network for outdoor
RGB camera relocalization.
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