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Figure 1: Our SDC feature descriptor improves dense pixel-wise matching. From left to right: Disparity map for ELAS [6] on
ETH3D [16], optical flow for CPM [10] on Sintel [4], and scene flow (disparity and optical flow components) for SFF [18] on
KITTI [14]. Results are shown after consistency check.

ABSTRACT
Dense matching is a fundamental problem in many tasks and ap-
plications of Computer Vision. Of utmost importance for robust
matching algorithms is a powerful representation of image points.
With SDC (Stacked Dilated Convolution), we have presented a uni-
versal design element that was successfully used in a deep neural
network for dense feature description of images. Using these de-
scriptors, we could improve matching in wide variety of problems
and domains.

1 INTRODUCTION
Advanced Driver Assistance Systems (ADAS) or (partially) au-
tonomous systems require accurate and reliable perception of the
environment. Two important examples of perception are geometric
reconstruction of the surroundings and the prediction of motion.
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Scene flow is the joint problem of 3D geometry and 3D motion esti-
mation based on a stereo camera system. The underlying problem
is dense (pixel-wise) matching across multiple (at least four) images.
As such, scene flow is subjected to all challenges of matching, like
image noise, changes in illumination, occlusions, fast motions, and
so on. Next to the matching algorithm itself, the performance of
scene flow algorithms is defined by the capabilities of the used fea-
ture representation to describe single image points. Famous among
top-performing algorithms are CENSUS [23], SIFT [13], SIFTFlow
[12], or dedicated learned features within an end-to-end deep net-
work [5, 7, 21] to name a few. The list of problems with these
descriptors is long. Some lack the ability to generalize, some are not
applicable for dense description (only for sparse key points), others
are specialized on a single matching problem or domain, most of
them reduce the spatial resolution, many have too small receptive
fields to cope with difficult image situations.
In this extended abstract we re-present SDC (Stacked Dilated Con-
volution) [20], a design element and deep neural network that
handles all of the mentioned problems which leads to a significant
improvement for dense matching across different algorithms and
domains (cf. Figure 1).
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Figure 2: The architecture of a single SDC layer. Our con-
tribution is the combination of parallel convolutions with
different dilation rates. The outputs are stacked along the
feature dimension to produce a multi-scale response.

2 STACKED DILATED CONVOLUTIONS
Motivation. For dense matching, spatially variant features are
required that differ sufficiently even across neighboring pixels.
Therefore, any form of sub-sampling (pooling, strided convolu-
tion, and others) should be avoided to make feature representations
not overly smooth. As a consequence, our network operates at full
resolution, i.e. the stride for all layers is always 1. Also importantly
to note is that by this choice, a dense feature map can easily be
predicted with a single forward pass for the entire image. Otherwise
if a network contains strided layers, overlapping image patches
need to be extracted to produce a dense feature map, or even more
involved techniques need to be used [1].
The second important requirement for a robust feature descriptor
is a large receptive field. Many image regions suffer from low lo-
cal entropy (due to lighting, over- or under-exposure, texture-less
regions, repetitive patterns, and so on) or are in general difficult
or impossible to match (e.g. at occlusions) which makes it diffi-
cult to describe them in a recognizable way. Due to this, we argue
that information of a large context needs to be considered for the
description of single pixels.
Lastly, a universal feature descriptor that is applicable to many
diverse domains and matching problems is desirable. This goal is
obtained by collecting training data across many different data sets.

Method. The main challenge of our architecture is to obtain a
very large receptive field, maintain full resolution, and at the same
time keep the network size reasonable. To achieve all this, we did
propose SDC [20]. Dilated convolution [22] is an effective strategy
to increase the receptive field without increasing the kernel size
or the number of parameters. Typically, dilated convolutions are
applied in sequence. In contrast, we apply dilated convolution in
parallel. Since the dilation rates correspond to sub-scales, with SDC
we can make sure that every layer operates (at least partially) on
the original scale. Yet, SDC produces a multi-scale filter response.

Table 1: Relative reduction of outliers when using SDC [20]
as feature descriptor for different matching algorithms on
different data sets.

Stereo Optical Flow Scene Flow
Data set ELAS [6] SGM [8] CPM [10] FF++ [17] SFF [18]

KITTI [14] 29.7 % 13.7 % 19.5 % 19.8 % 26.2 %
ETH3D [16] 59.8 % 3.6 % – – –
MB [3, 15] 19.3 % 15.1 % 37.5 % 30.7 % –
Sintel [4] – – -11.3 % 27.0 % –
HD1K [11] – – 23.8 % 50.0 % –

One example for such a SDC layer is given in Figure 2. It is important
to note that this design is not limited to specific hyper-parameters
(parallel convolutions, dilation rates, kernel sizes, etc.). The com-
plete SDC network consists of five such layers in a sequence which
all process the input at full resolution. This way, a dense feature map
for arbitrarily sized images can be computed in a single forward
pass of the network.
For training, we follow a triplet training strategy [9] where a refer-
ence patch along with its correct correspondence and a negative
match is fed through the network. The loss objective is to reduce
the feature distance (in Euclidean space) for the matching pair
below the feature distance of the negative correspondence. The
thresholded hinge-embedding loss [2] is adopted for this.

Results. Three experiments were conducted to verify the superior
performance of SDC features in the original submission. The first
two did compare SDC to heuristic descriptors and state-of-the-art
descriptor networks in terms of accuracy and robustness. SDC
could outperform all methods within the comparison. The third
experiment did test SDC in actual matching algorithms. Six data
sets for different matching problems (stereo disparity, optical flow,
and scene flow) were tested with five different matching algorithms.
A summary of the results is given in Table 1. Here, we list the
improvement of each algorithm on each data set when replacing
the original feature descriptor with SDC features. The improvement
is given in relative reduction of outliers (according to the KITTI
outlier metric [14]). For all but one combination, SDC brought an
improvement. In many cases, the improvement was significant,
cutting the rate of outliers by half. For more details, we refer the
reader to the original submission [20], the original supplementary
material, and the follow-up study on SDC [19]. These documents
provide a lot more detailed information and additional experiments
to validate the design and performance of SDC.

3 CONCLUSION
The re-presented concept of SDC is a straightforward way to obtain
a large receptive field, keep the network size small, and allow the
network to operate at full image resolution. The requirements of
these properties are motivated by the challenges of general dense
matching problems. Extensive experiments did show the outstand-
ing performance of SDC in comparison to state-of-the-art and in
practice when applied in matching algorithms. Lastly, we would
like to note that the ideas of SDC might be of high interest in other
dense prediction problems, which is yet to be shown.
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