
Advantages of Physically Based Rendering for
Autonomous Driving Validation

Johannes Günther
johannes.guenther@intel.com

Oliver Grau
oliver.grau@intel.com

Isha Sharma
isha.sharma@intel.com

Björn Brücher
bjoern.bruecher@intel.com

Intel Deutschland GmbH
Munich, Germany

Figure 1: Photorealistic rendering of a driving scenario generated with Intel® OSPRay’s path tracer, demonstrating complex
materials, soft-shadows from the illuminating sun and depth of field effects by the camera.

ABSTRACT
To gain the trust of governments and customers in the safety of
autonomous driving systems it is crucial to demonstrate that they
have been developed and successfully validated using a broad range
of difficult scenarios. Because it is virtually impossible to capture
all representative variants in the real world, researchers have al-
ready employed the simulations of virtual scenarios, e.g., using the
CARLA [1] system.

However, often the sensor (including camera) and lighting sim-
ulation of those system is quite approximative, many real world
effects are neglected. While today it is unclear how accurate such
simulations need to be, we like to provide several examples where
approximations are conspicuous and where intuitively those short-
comings will affect the validation coverage. Moreover, this position
paper shows the limitations of rendering systems currently used
in simulation, specifically using game engines, as CARLA [1] does.

ACM CSCS 2019, October 8, 2019, Kaiserslautern, Germany
.

The main concern regarding such game engines is that they are
built – and optimized – toward fast generation of visual appealing
images at real-time frame rates. That makes a physical correct sim-
ulation of other sensor classes, which operate not directly in the
visual spectrum hard or impossible. This is in particular the case for
sensors like LIDAR, which operates in the infrared light spectrum,
and radar, which again works on different principles.

Furthermore, we demonstrate that physically based rendering, as
implemented in the open source rendering library Intel®OSPRay [2],
can close the gap between simulation and the real world dramati-
cally. We finish with a brief discussion on how these concepts can
help validation of autonomous driving systems.

KEYWORDS
Autonomous Driving, Machine Learning, Global Illumination, Ray
Tracing

1



ACM CSCS 2019, October 8, 2019, Kaiserslautern, Germany J. Günther et al.

1 ADVANTAGES OF PHYSICALLY BASED
RENDERING

In the following we will detail some real world scenarios which are
difficult to simulate with traditional rasterization-based renderers,
but are well supported by ray tracing and physically based systems.

1.1 Physical Sensor Simulation
The accurate simulation of optical sensors such as cameras or
LIDAR is well suited for ray tracing based systems. Lens effects
like depth of field, chromatic aberration, distortions, and vignetting
differ from camera model to camera model and can be computed.
A ray tracer can even realistically simulate dominating artifacts
such as glare or lens flares, which are caused by multiple internal
reflection in the optical system.

Arguably more important are time dependent effects. The pixel-
sensors of camera are not queried and read-out at the same time,
resulting in a so-called “rolling shutter” effect. Similarly, one LIDAR
scan of the surrounding takes some amount of time. Thus, when
objects are in motion, or when the sensor itself is in motion, the
shapes of captures objects will be blurred (“motion blur” effect) and
distorted.

1.2 Complex Materials
Road markings and street signs have retroreflective properties to
maximize visibility, in particular during twilight and night, i.e., they
reflect light from the headlights primarily back in the direction
toward the car.

Furthermore, especially when simulating LIDAR, it is important
to support spectral rendering, because the reflection properties at
infrared wavelength can be quite different to those in the visible
light spectrum. Neglecting that will probably result in too ideal-
istic LIDAR responses, whereas accurately modeling the infrared
light propagation correctly results in either missing or in ghosting
responses.

1.3 Shadows, Reflections and Illumination
Shadows from bright light sources like the sun, or headlights of cars
create high-contrast regions. Furthermore, rasterization based tech-
niques such as shadowmaps cannot render contact shadows created
near small geometric details, whereas shadows computed with ray
tracing support this effect. Such details result in considerably dif-
ferent images and can be quite important for creating scenarios for
training and validation for autonomous driving systems.

Correctly generated reflection are similarly important. Narrow
crossings, where it is not possible to see around sharp turns, have
mirror installations to aid the determination whether the crossing
is free. Another example are glass facades of office buildings, where
the reflections of cars can lead to detection ghost cars. Computing
reflections is what ray tracers are famous for.

Two example situations where computing direct illumination
with high dynamic range and with absolute physical quantities are:
A low sun shining at a wet street, resulting in glare and blending.
And the visibility of traffic lights with the sun shining from behind.

Indirect illumination including color bleeding could also play a
(minor) role in accuracy, because it lowers the contrast of object

contour, which could make segmentation and detection fail more
often, if not incorporated in training.

1.4 Different Weather Conditions
Accounting for all different weather conditions is important for
training the autonomous system for the real world. Physically based
engines like OSPRay can support a physically based atmosphere
and sky model, to not only render at sunny conditions, but also
simulate the ambient diffuse lighting on an overcast day.

Many weather phenomena require volume rendering to render
them accurately. This includes not only the obvious fog (which
also scatters light from tail lamps), or clouds. Notably, also rain or
snow can only be efficiently simulated by volumetric techniques,
because it is prohibitive expensive to simulate myriads of rain drops
or snowflakes individually.

2 THE OSPRAY RENDERING LIBRARY
OSPRay is an open source, scalable, and portable ray tracing engine
for high-performance, high-fidelity visualization. OSPRay is part
of the Intel oneAPI Rendering Toolkit and is released under the
permissive Apache 2.0 license. The purpose of OSPRay is to provide
an open, powerful, and easy-to-use rendering library that allows
one to easily build applications that use ray tracing based rendering
for interactive applications (including both surface- and volume-
based visualizations). OSPRay scales well and runs on anything
from laptops, to workstations, to compute nodes in HPC systems.

OSPRay also implements a physically based renderer which is
based on path tracing. It supports complex materials, advanced
cameras and realistic light sources, see Figure1. OSPRay is also
designed in a modular way, making it easy to customize, extend or
replace almost any part of the rendering pipeline, from geometry
or volume objects over materials to cameras and light sources, or
even the renderer core itself.

3 DISCUSSION AND OUTLOOK
The physical based rendering library OSPRay provides an excellent
basis to simulate scenes, sensors, material and light more realistic
than it would be possible with tools based on video game engines.
These tools provide a basis to evaluate the importance of sensor and
scene effects for the validation of complete autonomous driving
systems or components of it. We will implement and test a physical
based rendering engine in the BMWi project “KI-Absicherung” and
evaluate it for the use in the validation of AI-based perception for
automated driving.

REFERENCES
[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st
Annual Conference on Robot Learning. 1–16. http://carla.org/

[2] Ingo Wald, Greg P. Johnson, Jefferson Amstutz, Carson Brownlee, Aaron Knoll,
Jim Jeffers, Johannes Günther, and Paul Navrátil. 2017. OSPRay - A CPU Ray
Tracing Framework for Scientific Visualization. IEEE Transactions on Visualization
and Computer Graphics (2017). https://www.ospray.org/

2

http://carla.org/
https://www.ospray.org/

	Abstract
	1 Advantages of Physically Based Rendering
	1.1 Physical Sensor Simulation
	1.2 Complex Materials
	1.3 Shadows, Reflections and Illumination
	1.4 Different Weather Conditions

	2 The OSPRay Rendering Library
	3 Discussion and Outlook
	References

