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ABSTRACT
In this article, we present an idea for corner case identification
in cyclists’ trajectories. The ability to identify corner cases is
vital for verification and validation of machine learning meth-
ods, especially in the domain of ensuring automated driving
functions. Corner cases usually consist of critical situation, so
their number is very small and therefore difficult to find in a
vast of data. In this article, we focus on cyclists’ trajectories
used for the training of machine learning-based intention de-
tection models. The method starts with a transformation of a
cyclists’ trajectory in a position and orientation independent
coordinate system. Afterward, we use the coefficients of an
orthogonal polynomial approximation to describe the cyclist’s
trajectory in a compact but yet expressive way. Based on the
coefficients of these polynomials, we aim to identify critical
and also uncommon trajectories in the data. Therefore, we
apply a density-based model as well as novelty detection. The
idea of our approach should be transferable as far as possible
to other vulnerable road users such as pedestrians.
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1 INTRODUCTION
A car driver drives along a road. Suddenly, behind a parked
truck, a person steps onto the road. The driver can prevent
∗www.ies.uni-kassel.de
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the accident because she has already reduced her speed due
to years of experience. In the future, autonomous vehicles will
have to deal with such critical and unpredictable situations
as well. The development of machine learning algorithms
for pedestrians or in general for vulnerable road user inten-
tion detection [2], prediction, and situation analysis is one
major aspect in ensuring automated driving functions. For
this purpose, data for training and testing of the machine
learning methods is required and has to be collected. How-
ever, the provision of representative sensor data for such
complex learning processes is still an open problem. The diffi-
culty lies in the fact that critical and thus, serious situations
are particularly rare and often hidden in a vast amount of
uninteresting data. The identification of these critical but
rare situations, also referred to as corner cases [3], is crucial
for testing and validating machine learning-based intention
detection models. In this article, we introduce a novel method-
ology to recognize corner case data in trajectory datasets.
To further motivate our approach, consider the following
scenario recorded an urban intersection [8] as depicted in
Fig. 1. In this case, cyclists usually come from the bottom
right then drive straight through the scene or crosses the
road via the pedestrian crossing. These common trajectories
are drawn in gray. However, in this particular case, a cyclist

x(t)

y
(t

) pedestrian crossing 

with traffic lights

Figure 1: The figure shows a schematic drawing of the cross-
ing, the common trajectory paths (gray) and an uncommon
trajectory sequence, where a cyclist (dashed blue line) instead
of crossing the road continues along the road.
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(dashed blue line) arrives at the pedestrian crossing. Initially,
it looks like she intends to cross the street, but she changed
her mind and heads along the other direction. This trajectory
is a typical uncommon and potentially critical situation, e.g.
an approaching vehicle might need to brake firmly to avoid
a collision with the crossing cyclist, potentially leading to
rear-end collision with another car. In this article, we aim
to identify such uncommon situations and distinguish them
from the vast amount of usual trajectory data.
The remainder of this article is structured as follows. In
Section 2, we describe the first approaches for corner case
identification. Finally, a conclusion and outlook to future
work are given in Section 3.

2 CORNER CASE IDENTIFICATION

Preprocessing & sliding 

Window Segmentation
V-Ego Transformation

Shape Space 

Representation

Novelty Detection
Common 

Case

Corner 

Case

Figure 2: Pipeline towards corner case identification.

Our concept for the identification of corner cases in cyclist
trajectory data essentially consists of the four blocks shown in
Fig. 2. We represent each trajectory by a time series consisting
of a two-dimensional position indication (𝑋0, ..., 𝑋𝑘) at 𝑘
discrete, usually equidistant points in time. For preprocessing,
e.g. filtering, we apply similar techniques as described in [1].
Subsequently, we use a sliding window segmentation to obtain
a location and orientation independent representation of the
considered trajectory segment. Therefore we transform the
trajectory from the world coordinate system into the ego
coordinate system of the cyclist [7]. In this ego coordinate
system, all movements are mapped independently of the
global location or direction. The transformation into this
coordinate system is done by translating the current position
into the origin of the coordinate system and rotating it by
the negative, horizontal angle of the current direction of
motion, so that the new horizontal coordinate axes are aligned
(longitudinal) and perpendicular (lateral) to the direction
of motion. We represent the transformed trajectory using
the coefficients of the orthogonal polynomial approximation
of the respective trajectory. The polynomial coefficients are
in a least-square sense best estimation of the mean, slope,
and curvature of the input signal [5]. This representation
is also referred to as shape space [4, 6]. Currently, we use
polynomials up to the 4th degree. However, a clear statement
on the degree of the polynomial cannot be given at the current
stage of development, because the degree has a significant
influence on how much information is lost if the degree is to
small or rather kept if the degree is large enough. With this
procedure, we end up with two orthogonal polynomials one
for the 𝑥-coordinate and one for the 𝑦-coordinate over the
time 𝑡. The last step is to identify and classify the coefficients

of orthogonal polynomials to find the relevant sequences
containing the corner cases [9]. To accomplish this task, we
use density-based modeling techniques, and novelty detection
methods. A suitable method would be CANDIES [10], a
method based on a probabilistic model in this case a Gaussian
Mixture Model and has two main focuses. The first is to
detect novelty accumulations in so-called low density regions
(LDR), i.e. regions where no regular samples are expected.
The second focus is on high density regions (HDR), i.e. regions
where the novelties are hidden by regular samples. Depending
on whether the new sample is in the LDR or HDR region,
appropriate detectors are used to check in case the sample is
a novelty or in our case a corner case. This knowledge can
now be taken into account by the model, which makes our
corner case a well known case.

3 CONCLUSION
In this article, we have proposed a novel method to identify
corner cases in trajectory data. With the described method,
we do aim to find corner cases efficiently. Moreover, we want
to investigate what our proposed method detects as unusual
or even critical. In return, we also hope to gain insights
into how trajectories are classified as critical by humans and
how this relates to our corner case identification method.
Our idea and implementation so far is mainly focused on
cyclists’ trajectories, but for future work, we also apply these
ideas to other trajectory datasets, e.g. pedestrians and other
vulnerable road users.
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