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Figure 1: Structure from motion on a RGB image sequence (left) and the corresponding semantic image sequence (center) are
used to obtain a semantic 3D point cloud. The scene layout (right; oblique view) is generated from the point cloud and repre-
sented by the street network and by oriented bounding boxes for scene objects of different classes (e.g. green for vegetation).

ABSTRACT

Automized scene layout generation gives the opportunity for saving
time and scaling up variations in 3D city models. In this contribu-
tion, a method for combining structure from motion with semantic
segmentation to obtain the street network and bounding boxes of
scene objects as parts of the scene layout is proposed. Tests with
an image sequence of a suburban scene show the potential to ob-
tain the street network and bounding boxes of multiple objects
belonging to different semantic classes.
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1 INTRODUCTION

Synthetic images can be used to train deep networks for computer
vision tasks like object detection [6], [9], [8] or semantic segmenta-
tion [11], [2], [1]. Especially for automotive applications with hard
robustness requirements, synthetic images give the opportunity
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to obtain data from corner case situations like bad illumination or
near accidents [14] and to use them for training. While synthetic
images of artificial cities can be derived easily from computer games
(e.g. [10], [5]), does creating synthetic images of real cities typically
require a vast amount of careful manual modelling of the scene lay-
out and the 3D scene objects like buildings or vegetation to obtain
a realistic model of the city for rendering. In contrast to manual
city modelling, do methods like structure from motion (e.g. [13]) or
visual SLAM (e.g. [7]) allow to obtain a representation of the city
as well, for example by a sparse 3D point cloud belonging to scene
objects like buildings or vegetation.

Potential for saving time and for increasing the number of vari-
ations in training data by using a large number of scene layouts
could be exploited by automatizing scene layout generation. One
approach to achieve this goal could be combining a 3D point cloud
from structure from motion with semantic information obtained
from semantic segmentation (Figure 1 center) of an input image se-
quence (Figure 1 left) as basis for generating the scene layout. While
the street network as one part of the scene layout is already avail-
able from the camera trajectory estimated by structure form motion,
is the process for generating bounding boxes of scene objects as
another part of the scene layout (Figure 1 right) more challenging.

2 METHODOLOGY

Main contribution of this paper is a method for automized gener-
ation of bounding boxes for scene objects by the aforementioned
semantic-aided structure from motion. Goal of the proposed method
is getting a first impression of the potential to automatize scene
layout generation. The method consists of the steps (Figure 2) that
are being explained in the following.
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Figure 2: Workflow for automized scene layout generation represented by scene objects and the street network.

2.1 Structure from motion

A sparse point cloud as 3D reconstruction of the scene is obtained
by structure from motion using an image sequence recorded with
an environment-observing vehicle camera. Thereby, feature cor-
respondences between image pairs are used for triangulating 3D
points. An indirect, feature-based, 3D reconstruction method seems
favorable over direct methods as the later ones tend to fail in the
case of large motion between consecutive images [15] as they might
occur on vehicles. Structure from motion allows to obtain a glob-
ally consistent point cloud and camera trajectory by more complex
optimization [12] and is therefore preferred over visual SLAM or
visual odometry. During 3D reconstruction, the same camera model
is used for every image to ensure that the point cloud is Euclidean.

2.2 Semantic segmentation

Semantic information is obtained by semantic segmentation of each
image of the input image sequence used for 3D reconstruction. Due
to the recent success, a deep learning method is used for semantic
segmentation. The model is trained on road scene images for typical
semantic classes of road scenes, like vegetation, road or building. A
semantic class is assigned to each 3D point based on a majority vote
of the semantic classes of all related 2D feature points available in
the semantic images.

2.3 Scale integration

In addition to an Euclidean coordinate system, metric scale of the
scene layout is necessary for consistency when replacing scene
object bounding boxes by specific 3D models. Scale integration is
done by manually defining 3D coordinates of two camera positions,
ideally the most remote camera positions to keep the scale error low.
The 3D coordinates can be obtained from GPS data, for instance.

2.4 Point association

The 3D points of the point cloud have to be associated to scene
objects for which the bounding boxes should be generated. First,
all 3D points belonging to the same semantic class are selected and
a seed point is randomly chosen from the selected points. Second,
points nearby the seed point are selected based on a given Euclidean
distance threshold. Previously selected nearby points are used as
seeds for the next iteration of point selection until there are no
more points within the distance threshold. Third, all the selected
nearby points are assigned to a scene object, assuming that road
scene objects can be distinguished by a distance criterion reliably.

Forth, the last steps are repeated from step one on, points already
assigned to an object are excluded.

2.5 Bounding box generation

An oriented 3D bounding box is generated for each scene object.
Its position is defined by the center of gravity of the 3D points
of the scene object. The orientation of the box is obtained from
the Eigenvectors of a principal component analysis using these 3D
points. The extension of the box is defined as smallest box enclosing
these 3D points.

3 EXPERIMENTS

The proposed method is tested on an 150 image sequence recorded
in a suburban area with an environment-observing forward-looking
vehicle camera. COLMAP [13] is used for 3D reconstruction; pair-
wise extensive matching between all images is applied as a high
number of 3D points is desired and no time requirements have to
be fulfilled. Semantic segmentation is done with the Deeplabv3+
network [3] using a model trained by the same authors using the
Cityscapes road scene image dataset [4]. 3D coordinates of the
two most remote camera positions are approximated from aerial
imagery and the position data provided by Google Earth.

4 RESULTS AND DISCUSSION

For the given image sequence, several scene objects have been ob-
tained (Figure 1 right) especially for the semantic classes vegetation
(green), terrain (light green), sidewalk (pink) and road (purple).
Besides, the estimated camera trajectory covers all 150 images.
Thereby, it has to be mentioned that currently only a very sim-
ple point association algorithm is used and only a single distance
threshold was tested, leaving space for further research and opti-
mization. Nevertheless, the aforementioned observations show the
potential of automatizing the scene layout generation by means of
a semantic-aided structure from motion method. In particular, the
large number of vegetation objects that has been generated seems
promising, as such objects can not be retrieved from maps in many
cases.

5 CONCLUSION

This paper has shown the potential for combining semantic seg-
mentation and structure from motion for automized scene layout
generation. Further improvements can be expected by dense in-
stead of sparse point clouds and by integrating additional computer
vision tasks like single image depth estimation into the workflow.
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